
Proceedings of the Third European Conference on Computer-Supported Cooperative Work
13-17 September, 1993, Milan, Italy
G. De Michelis, C. Simone and K. Schmidt (Editors)

Support for Collaborative Authoring
via Email: The MESSIE
Environment
Martina Angela Sasse, Mark James Handley
Department of Computer Science, University College London, UK

and

Shaw Cheng Chuang
Computer Laboratory, Cambridge University, UK

Abstact: MESSIE is a collaborative authoring environment to support the
production of large-scale documents by teams of geographically distributed
groups of authors working with hetereogenous systems. The environment al­
lows authors to submit text at various stages of gestation (e.g. list of topics,
first draft) to a shared filestore via email. All authors collaborating on a docu­
ment can read each others' contributions, and add suggestions, comments and
additional material directly to the document. The system integrates automat­
ically answered electronic mail, shared file store administration, and a version
control tool in a UNIX environment. The paper describes design and imple­
mentation strategy, and reports observations and a number of changes which
were made during a 4-month trial period with three collaborative authoring
teams.

1 Introduction

Collaboration between geographically dispersed groups is becoming increas­
ingly common. In Europe, there are a number of programmes, such as ES­
PRIT, RACE and DELTA, to promote research collaboration on an interna­
tional scale. Most of the projects funded in such programmes require the joint
authoring of comprehensive reviews, reports or large-scale technical documen­
tation. Most authoring teams hold regular meetings, and these meetings are a

ECSCW '93 249

considerable drain on authors' time and travel funds.

Being involved in many such projects, we began to look for collaboration
support which could reduce the number of meetings related to joint authoring
activities. We conducted a case study to investigate the use of Multimedia
Conferencing as a support environment (Baydere et al., 1993). We found
that Multimedia Conferencing provided the rich channels of communication
which creative groupwork supposedly requires (Chalfonte et al., 1991), and is
normally only achieved through face-to-face meetings.

Most teams of authors, however, do not have access to expensive Multimedia
Conferencing systems. Even if they did, previous research (Grudin, 1990) has
shown that less technology-experienced users than the ones in the case study
would be likely to reject such a sophisticated groupware system because of the
learning overhead required.

An additional insight gained from the case study was that only the initial
phases of document production (generating ideas and determining scope and
structure of the document) could be described as creative. The other phases
did not necessarily require rich channels of communication - authors actually
preferred asynchronous communication via email, since they felt it was more
effective than synchronous sessions. The case study also re-inforced previous
observations that considerable time and effort needs to be spent on managing a
collaboratively authored document. The problems of managing the process of
producing large documents between a number of project members in different
locations can be summarised as follows:

• Document integrity

Authors will send copies of their contributions to other authors for information
and comment, and amend their contribution as they receive feedback. Since
it would require considerable effort to send a new version to all other authors
every time a change is made, or only send it to the co-author in response to
whose suggestion the change was made, different authors might hold different
versions of some parts of the document.

• Duplication of effort

Several authors might write the same comments or supply the same additions
to the document. Authors might repeat explanations or background material
which is already covered in other parts of the document.

• Integration of contributions

Contributions written by different authors are likely to vary in use of termi­
nology and style. Since this does not make for a very readable document, the
project member charged with editing the final version has to spend consid­
erable time and effort to (a) integrate the contributions into a coherent and

250 ECSCW '93

readable document, and (b) provide cross-references between various parts of
the document.

• Editing and formatting

Most authors would prefer to use their favourite word processor or editor
and text formatter to produce their contributions. These are likely to be
different tools in large authoring teams. If authors do not use the same tool,
considerable effort needs to be spent on re-typing and re-formatting parts of
the document. Teams in which authors use different tools often supply the
person doing the final formatting with an ASCII hie and a hardcopy of the
formatted version - this approach avoids re-typing text but formatting needs
to be done at least twice.

We decided to identify a set of requirements and design objectives for an
asynchronous colloboration environment for collaborative authoring to provide
support for dealing with these document management problems. The original
system requirements and design objectives are elaborated in Section 2, and the
implementation is described in Section 3. The user's view of interaction with
the environment is described in Section 4, followed by a summary of results
from the trial phase in Section 5.

2 Requirements and Design Objectives

The intent was to specify a simple system which could be installed locally and
administered independently by each authoring team. We wanted to implement
a basic system quickly by using existing tools, and offer it to a number of
authoring teams for producing real documents to gain feedback for further
development and improvement.

At the outset of the project, we started with two sets of requirements for
the environment: requirements of individual authors and requirements of the
administrator, a role assumed by one member in every joint authoring team
using the environment.

The author requirements we identified we identified for asynchronous col­
laborative writing support were:

1. Make drafts available as soon as possible

To ensure misunderstandings are discovered as early as possible, and to ensure
that the document grows in a uniform way, it is important that early drafts
of sections are made available early in the writing process.

2. Preserve the integrity of the document

ECSCW '93 251

In order to preserve the integrity of the document, or its various parts, all
authors should have access to the latest version of any file. Authors should
have the facility to work on a single master copy of each part of the document.
Clearly, authors should not be allowed to edit the master copy of a document
section while another author is editing it.

3. Avoid duplication of effort

In order to avoid duplication of effort, all comments and additions to a docu­
ment should be entered into the document itself, so that authors can identify
which comments and additions have been made by other authors.

4. Distribute editing and formatting work

In order to distribute the effort involved in final editing and formatting of
document, a prime requirement was to allow authors to exchange revisable
text as much as possible. Imposing any single document exchange format for
authoring teams would preclude this. Whilst it is not possible to support WP
and DTP applications which produce non-revisable formats, the environment
should support handling of a variety of revisable text formats in addition to
ASCII. In order to deal with diagrams, the system should handle PostScript,
which, even though it is non-revisable, is so ubiquitous that most authors can
view or print such files locally. There is also a requirement for tools which
facilitate compilation of reference lists and glossaries.

5. Avoid large learning overhead

The system should be simple and transparent in use, and require users only to
learn and remember a small number of commands. Where possible, it should
allow users to use familiar topis for familiar activities.

6. Access without direct login ' '

Not all authors have the facility to directly access remote machines today.
In addition, it is important to consider that not all sites who might want to
install such an environment would want to allow remote logins and give direct
access to a shared filestore facility.

7. Deal with heterogeneity

Although there are several synchronous authoring tools available, this system
must provide access from a wide range of remote systems. No existing tool
would run on all the available remote systems, and the overhead in developing
any software to run on all such systems would be too great. Thus the system
should only involve one installation - at the site where the authoring team's
version of MESSIE and the filestore are kept.

8. Policy-free collaboration |

The system should be as policy-free as possible. It should provide the basic
collaboration environment, but the users should decide the details of how that
environment should be applied to their collaborative task.

252 ' I ' | , ECSCW93

The requirements of the authoring team's administrator can be summarised
as follows:

1. The system should be simple to install, maintain, and port.

2. Storage overhead for the documents should be kept to a minimum.

3. It should be possible to manage documents remotely as well as locally.

We decided that these requirements could be met by integrating and devel­
oping the functionality provided by existing tools - shared nlestore, electronic
mail, and a version control tool - into a support environment which would
provide authors with a basic set of facilities to submit, read, edit, delete and
list files. The environment allows authors to submit text at various stages of
gestation (e.g. list of topics, first draft) to the shared filestore via email. All
authors collaborating on a document can request files submitted by the other
authors, and add suggestions, comments and additional material directly to
the document.

User composed
MESSIE

message

Status

Results)-

(optional)

Figure 1: Interacting with MESSIE

3 MESSIE Design and Implementat ion

All parts of a collaboratively authored document supported by the environment
are held in a shared filestore, which is administered by one team member.
The document can be created and accessed by sending files and requests by
electronic mail to a MESSIE email account. MESSIE accepts email messages
containing MESSIE commands and new text, performs the actions specified
by the command (subject to access control), and returns the final status and
results. This is shown in Figure 1.

MESSIE places no specific requirements on the end-user environment. An
author composes a message using their favourite mail interface program - on

ECSCW '93 253

a PC, workstation, mini or mainframe, running their respective operating sys­
tems. The message is then submitted to MESSIE as a command file. There
is no restriction on the type of mail system authors can use, as long as the
message can be gatewayed intact to the MESSIE address. When a message
addressed to MESSIE arrives in the MESSIE mailbox, MESSIE is activated
(using one of the mechanisms described in the following section). A status mes­
sage will always be returned to the user to provide an overview of the outcome
of the command submission. Optionally, if the command generates outputs for
the user, these outputs will also be returned to the author in message separate
from the status message. '

3 .1 M E S S I E I n t e r n a l

In this section, we will take a closer look at the MESSIE box as shown in
Figure 1. The logical relationship between MESSIE components is illustrated
in Figure 2.

MESSIE has been designed to consist of two highly independent parts. The
first part is a generic command interpreter, which performs validation and
execution of commands, user access control, and notifications. The command
set and user access and addressing information is stored in separate databases,
currently implemented in dbm. This allows MESSIE to be easily expanded to
add new functionality.

The command database uses the command name as key to locate the actual
program which will perform the actions of the command. The access mode
of the command can also be indexed. Currently, only read and write access
modes are supported. These access modes are used in conjunction with the
user access authorisation. The user database uses the mail-id as a key to
check the user's access authorisation. For every command to be executed,
the user authorisation is checked against the command's access mode. Only
users with the correct access authorisation are allowed to execute a particular
command. To simplify administration, a wildcard authorisation is also allowed.
A wildcard of read-only access would turn MESSIE into an info-server.

The second part of the environment are the MESSIE command executables.
These could be implemented in any language, independent of the front-end
command interpreter. The front-end communicates with the MESSIE com­
mands using shared-file message passing. This avoids using any operating-
system dependent IPC mechanisms. Since there are no concurrency activities
in MESSIE, very simple message passing mechanisms can be used.

The command executable also writes the status of the command execution
to the same status file used by the front-end. Thus, after execution of the
commands in a message, a single status message is always returned to the

254 ECSCW '93

user. The individual commands will also return their own messages where
appropriate. By having a separate command status file, the user will always
be given feedback on a particular MESSIE job submission. This also enables
the command executable to send as many (or as few) messages as are required
(e.g. one for each file requested for reading or editing). This helps to avoid
the creation of large return messages, which could potentially cause problems
with some mail systems.

Since MESSIE's front-end and command set are virtually independent,
MESSIE can be used as a generic e-mail based remote command shell (see
Section 7).

| Mail Transfer Agent

11 t
Incoming message Status reply Command reply

n

quested

i

User access control -»> MESSIE message parser

quested ' Re quested

Command access control

l

' 1 '
Command

r ''

List program Read program Edit program Others

I I
1 '

sees

\ r
1 IM'v <:•»«*•»•>

Figure 2: MESSIE Structure

ECSCW '93 255

3.2 Implementation Details

Since MESSIE has been implemented using a number of simple C programs
(approximately 100 lines of code), and shell/sed/awk/perl scripts, it contains
very little system-specinc code. It adopts a modular design approach: the
components used can be substituted by others. If a team, for instance, wants to
use a version control system other than SCCS (e.g. RCS), they can substitute
it. The few operating-system dependent details can be easily re-written. The
modular design approach also makes it easy to extend existing functionality.

The shell/sed/awk/perl scripts are mainly used for the construction of com­
mand executables. We found this approach to be extremely useful for rapid
prototyping and experimentation: the current set of commands was coded in
less than 40 man-hours. Certain commands were subsequently re-written, ei­
ther to improve performance or extend functionality, in response to the results
of experimentation with the first version. For instance, the list command, orig­
inally written in bourne shell, was re-written in perl - this increased the speed
with which the command could be executed by a factor of 100.

4 User view of MESSIE

4.1 Email Access

All parts of a collaboratively authored document supported by the environ­
ment are held in a shared filestore, which is administered by one of the authors.
(During the implementation and evaluation period, all those documents were
are held in a filestore at UCL, which was administered by the authors.) The
document can be created and accessed by sending files and requests by elec­
tronic mail to a MESSIE email account (see Figure 3 for an example message).

' i ',

From: a . s a s s e f i u k . a c . u c l . e s ,
To: m e s s i e 0 u k . a c . u c l . e s
S u b j e c t : j,

#C0HHAND r e a d R a c e _ d e l i v e r a b l e / c h a p t e r 2

Figure 3: Example of a email message to M E S S I E (for read-only
copy of a file)

4.2 MESSIE commands

MESSIE understands a set of commands contained in the body of an email
message sent to the email account. All commands have to be placed a the

256 ECSCW '93

http://sassefiuk.ac.ucl.es
http://messie0uk.ac.ucl.es

beginning of a line, starting with the instruction ^COMMAND, and consisting
of a command name and directory /file name (see Figure 3 one for an example
of the READ command). The basic command set is faiily small, covering
5 basic activities: submitting a new file, reading an existing file, editing an
existing file, deleting an existing file, and obtaining a listing of a directory.

4.3 Return messages, status reports and notifications

Regardless of the status of the request (i.e. whether it was successful or not),
MESSIE will always send a request status report back to the sender (see Figure
4 for a successful request, Figure 5 for a failed one).

To: a . sa s seQuk .ac .uc l . e s
Subject: Request rep ly read Race_del iverable/chapter2
From: The UCL-CS Hess ie Service <mes8ieeuk.ac .ucl .es>

read Race_del iverable/chapter2: Valid command
Read done

Figure 4: Example of request status report (successful)

To: a . sa s seQuk .ac .uc l . e s
Subject: Request rep ly read Race_del iverable/chapter2
From: The UCL-CS Hess ie Service <messief iuk.ac.ucl .es>

read Race_del iverable/chapter2: Valid command,
e d i t error: Race_del iverable/chapter2 does not e x i s t ;

p l e a s e choose another name

Figure 5: Example of request status report (unsuccessful)

For requests that generate a return message (e.g. the read command) this
return message will always be sent in a separate email message. The message
subject field in both return messages and status reports will indicate in response
to which request the message is sent.

MESSIE can handle multiple commands in one request - it is possible to request
more than one file in a single email message. Each file will be returned as
separate email message.

In addition to return messages and status reports, MESSIE sends a vari­
ety of notifications to authors when requested files are locked, when checkout
periods expire, and when changes have been made to a file.

ECSCW '93 257

http://seQuk.ac.ucl.es
http://mes8ieeuk.ac.ucl.es
http://seQuk.ac.ucl.es
http://ac.ucl.es

4.4 Shared filestore

The shared filestore is a tree-based structure of directories and files similar to
UNIX and MS-DOS filestores (and supports both UNIX and MS-DOS style
file naming conventions'). To find out what files are available in the directory
containing the document, authors can request a listing of the directory con­
tents. MESSIE will return a list of all existing files and their current status
along with any embedded meta-data (see 4.8). All files submitted to MESSIE
will have one owner - the author who first submitted a particular file become
its owner. The owner is notified of any changes made to the file (see 4.5), and
only the owner can delete an existing file.

4.5 Version Control
1 i

Once a file has been checked out for editing, MESSIE will lock its copy of
the file for the specified amount of time - the file cannot be checked out for
editing until it is returned, or the timeout period has expired. This locking
mechanism is the simplest way to preserve the integrity of the individual files
in the document. The tool employed to implement version control in MESSIE
is the Source Code Control System (SCCS), though other version control tools
can be substituted. ,

Read-only copies can still be obtained while a file is locked, and are au­
tomatically sent when a request for editing a locked file is received. If a file
which has been checked out for editing is not returned within 48 hours (or the
time specified at check-out), MESSIE will assume that the checked-out copy
of the file has been "lost" and unlock the last version. This timeout function
prevents files from remaining inaccessible if an author requests an edit and
then forgets to return the file. When a file is returned, MESSIE registers this
as a new version of the file. If an altered version of a file is returned after the
timeout has expired, MESSIE will only accept it as a new version if the file
has not been checked out by someone else since the lock was removed.

All changes made to a file are registered, and so all versions of a document
can be accessed if authors wish to do so, and MESSIE will provide any diff
file on demand. Furthermore, the owner of a file is notified when changes have
been made to a file (through an email message containing the name of the
person who has made the changes and a list of the changes). If other authors
want to receive these notifications for any file they do not own, they can join
a subscription list. This subscription facility was added following authors'
suggestions.

258 j ECSCW '93

4.6 Diagrams

Diagrams, figures and drawings are stored as PostScript files. Read-only ver­
sions of PostScript files will be sent in response to requests for these files.
Authors can print or view copies of these on their home printers. Each new
version of a picture will be a new file with its own filename (e.g. picl , pic2).
Each diagram file has an associated text file, into which comments can be en­
tered. The comment filename is naming using the convention of diagram file
name suffixed by the word "comment" (e.g. the name of the comment file for
diagram picl will be picl.comment). Comments can be appended to this file
using the adcLcomment command and read-only copies of the comment file can
be requested.

4.7 Glossary and Reference Files

One of the biggest problems associated with collaborative authoring of larger
documents tend to be the time and effort involved in compiling a glossary and
references as a deadline approaches. The environment provided by MESSIE
allows authors to collect such information throughout the project in a joint
file for the glossary, and a joint file for references. Authors request a current
version of these files, and, if the glossary entry or reference does not exist, send
a message which appends the glossary entry or reference to the file.

4.8 Document history

SCCS only provides a mechanism to achieve version control. A set of protocols
is still required to ensure effective joint authoring. Typically, sections of a
document are held in separate files. The owner of each file is the principal
author, who is ultimately responsible for this section of the document. When
the first version of a document is submitted to MESSIE, it is automatically
put under SCCS control, and then can be commented on by the other authors.
A modification history should be kept at the top of each file. An example of
such a modification history is shown in Figure 6.

MODIFICATION

DATE

HISTORY

MODIFICATION

DATE YOUR. .NAME MARKER REMARK

14/10/92 MH W001 2nd draft

* 15/10/92 AS W002 additions in 3.1

26/10/92 TC W003 Comments

28/10/92 MH W004 3rd draft

Figure 6: Example of modification history

ECSCW '93 259

This is necessary because although SCCS stores this information, it is not
immediately obvious to an author when reading the actual text of the most
recent version. lrThe marker is used indicate the exact place to in the doc­
ument text where changes have been, and can be used to locate comments
by particular authors. The owner of each file will remove the markers when
dealing with the comments. Furthermore, the creator of a file is encouraged
(though it is not mandatory) to include at the beginning of the file information
about content and status of the document, and actions which should be taken
by co-authors. Authors can also issue commands which will prompt Messie to
automatically fill in information about dates, confidentiality, and versions of
the document.

All information appropriate to these file fields can, if desired, be provided
by the document owner using the above commands. The information given
in those fields appears in listing of directories requested by authors, thereby
making it easier for authors to identify files which they want to request for
reading and editing. .

4.9 Commenting ; ^

It is important that authors can easily,recognise which parts of a document
have been changed or added, when and by whom. This information can be ob­
tained from di/f files (Neuwirth et al., 1992). Like Beck & Bellotti (in this vol­
ume), however, we found that authors prefer to have this information grounded
in the document itself. In order to achieve this, authoring teams need to agree
a set of rules - for which we have coined the term human protocols - for com­
menting. A example for human protocols (developed by one of the teams
involved in the trials) is:] ,

1. If the change is very small, such as spelling, an omitted word, etc, make the
change without marking that you have changed it.

2. Make any additions to the document in such a way that they stand out from
the original text, (our convention is [**W003 TC: this is a comment**]). A
more complete example looks like this:

Synchronous communication occurs when two or more

People interact simultaneously and in real-time,

e.g. in a telephone conversation [**W003 TC do we

need both examples**] or a video conference.

1SCCS does not visibly mark where changes have been made in the file. In order to
identify changes, authors would have to view the current version and diff file(s).

260 • ECSCW'93

The marker (eg. ***W003) should always be at the place of change. It is
always useful and convenient to put both the commenter's name and a brief
comment next to the marker to give some clue of why changes are made.

3. No text should be deleted by a commenter. Mark the text for deletion or
replacement, but let the person responsible for the section include the changes
as they see fit:

[**W004 Start HH 9/10/91 The above text should be

replaced with: Text should not be deleted...

W004 End **]

5 Results of the trial period

In order to evaluate the effectiveness of MESSIE as a support environment for
collaborative authoring by email, we released the system to a restricted group
of users for a trial period of 4 months. All groups used the system during this
period to produce a real, life-size document:

• Group 1: 10 authors at 5 sites in the UK and Germany, producing a 200-page
final deliverable for a RACE project over a period of 4 months;

• Group 2: 3 authors at 3 different sites in the UK and Belgium, producing
a 40-page intermediate deliverable for a DELTA project over a period of 2
months;

• Group 3: 3 authors at 2 different sites in the UK, producing a 6-page confer­
ence paper over a period of 3 weeks.

Altogether, the users issued 856 commands: among them 272 read com­
mands, 202 list commands, 155 submit commands, 96 edit commands, 65 write
commands, 35 delete commands, and 10 requests for help.

The general response of those users to the system was very positive indeed,
the single most important factor being that users could continue to use their
own email and text editing facilities, and only had to learn a small number
of additional commands in order to use the system effectively - authors felt
that the environment provided very useful support for-very little investment.
Authors were able to produce their contributions, and read others, using the
hardware and software that they were familiar with: IBM PCs, Apple Macs,
Sun workstations, and IBM and DEC mainframes. All groups started out
storing the documents in ASCII format. In Group 1, most authors started to
store their files in RTF format, since the final document was to be formatted in
MS-Word. The document in Group 2 remained in ASCII format until the very
end, and was formatted by one of the authors after the collaborative authoring

ECSCW '93 261

had finished. Group 3 merged the files halfway through the writing process into
a single document, and formatted it using LaTeX. On two occasions, TeX or
PostScript files were damaged in transit, a surprisingly low number considering
the total number of reads and edits performed on formatted files.

On the basis of the logs of the system use, and authors' comments, we
compiled a list of desired changes, which have been incorporated into MESSIE
2.0. These changes fall into two different groups: changes to the commands and
messages, and additional functionality. Commands and messages are briefly
described here, whereas additional functionality is discussed in section 6.

• Command recognition: most frequent cause of failed requests was mistyped
command names (e.g. "sumbit" instead of submit or "lsit" instead of list,
or lower-case "#command"). Instead of just returning these as errors, the
system can be made to recognise typos and execute the "most likely" request,
and return it together with the error message.

• Error recognition: mis-remembered command names (e.g. "create" instead of
"submit", or "write" instead of "submit"). Again, an aliasing mechanism can
be set up to recognise the most common confusion, execute the most likely
request, and remind the user of the correct command. Obviously this should
only happen where no document will be damaged by the assumption.

• Return files with failed submissions: There were several cases where "write"
commands failed because authors mis-spelt filenames or incorrect directory
paths. Even though authors were requested to keep a copy of all submissions
until the status request report confirmed successful submission, we found that
many did last-minute editing of files in their mail editor, and neglected to save
the emailed version. Since MESSIE did not return failed submissions, the last-
minute changes were lost to the author (though they could be retrieved from
the system backup mailbox). Now, the complete file is returned to an author
when submissions fail.

6 Discussion

In developing MESSIE, we have attempted to provide a general-purpose envi­
ronment to support collaborative authoring with a minimal set of user com­
mands. We decided to start with a simple, basic environment and add func­
tionality as requested by users. We adopted this design strategy in an attempt
to dodge the fate of some sophisticated groupware systems, which were re­
jected by their intended users (Grudin, 1990), and feel that the approach was
successful. >

Clearly, there is some debate over exactly which commands should be pro­
vided for the users. This is largely due to different groups' models for inter­
action with the system. For instance, if the system is to be strongly locally

262 ECSCW '93

administered, providing a "delete" command for remote users may be unde­
sirable. However, if the system is to be administered in a more distributed
fashion, more powerful (and potentially dangerous) commands (as described
by Borenstein, 1992) will need to be provided for remote use. Our current
command set lies somewhere between these two extremes, but the advantage
of our approach to the overall system design is that the local administrator
can decide on the level of support that will be provided, and thus provide the
appropriate command set to support this style of management.

Currently, MESSIE does not provide direct support any form of structured
documents - its model is that a document consists of a set of sections (files),
and it is entirely up to the authoring teams to decide whether and how a
document should be partitioned into sections. This is in line with our attitude
that the system should be as policy-free as possible. However, it may be
desirable to also provide some document structuring commands, whereby a
user can request, for instance, an entire document. The structuring command
would then utilise document meta-data to return the entire document in one
piece (rather that as distinct sections). It would also be possible to link such
a tool to a text formatter, and return, for instance, a PostScript version of the
entire document including diagrams. At the present, we consider such tools
outside the scope of what is intended to be a policy-free minimal system, but
there is nothing to stop a user group from deciding on a policy, and extending
the functionality to by adding such commands.

7 Conclusions and future work

MESSIE has the potential to be used as a general collaboration tool. Although
much effort is currently being put into synchronous collaboration tools, many
forms of collaboration do not need to be very tightly coupled. It is currently
used by the (geographically very much distributed) Executive Committee of
the British HCI Group (A Specialist Group of the British Computer Society) as
a document store and organizational memory: committee members submit and
request PostScript and RTF files for printing letterheaded paper and mailing
labels, templates for forms and letters, etc., as well as use it for collaborative
production and editing of minutes and policy documents.

It has been suggested that MESSIE be used for collaborative authoring of
software. Another project to which we aim to apply it is ESPRIT project
MICE (Kirstein, 1992) to handle the booking of resources for full-scale video
conferences between a number of European sites. In general, MESSIE may be
suitable for many tasks that require loose collaboration, but where the over­
head involved in porting synchronous software to all possible remote systems
is too great.

ECSCW '93 263

Acknowledgements

MESSIE was designed and implemented as part of the RACE CAR project, funded
by the Commission of the European Community. The authors would like to thank
Jon Crowcroft, of the Department of Computer Science at UCL, for helpful com­
ments and suggestions, and the UK CSCW Special Interest Group and the London
Unix User Group for feedback given on earlier presentations on the system. Finally,
a tribute to the groups of authors who used MESSIE over the last year - the ob­
servations we collected, and the feedback given during the trial period very much
shaped the design and implementation.

References

Baydere, S., Casey, T., Chuang',;S:,'Handley, M., Ismail, N. & Sasse, A. (1993):
"Multimedia Conferencing for Collaborative Writing: A Case Study." In
Sharpies, M. [Ed.]: Computer Supported Collaborative Writing. Berlin: Springer,
pp. 113-135.

Borenstein, N. (1992): Computational Mail as Network Infrastructure for Computer-
Supported Collaborative Work.; In CSCW'92: Proceedings of the Conference
on Computer-Supported Collaborative Work (Toronto, Canada, Oct. 31 - Nov.
4, 1992). New York: ACM. pp. J67-74.

Chalfonte, B. L., Fish, R..S. & Kraut, B. (1991): Expressive Richness: A Compar­
ison for Speech and Text as Media for Revision. In Proceedings of CHI, 1990,
(Seattle, Washington, April 1-5, 1990), New York: ACM. pp. 21-26.

Grudin, J. (1990): Groupware and Collaborative Work: problems and prospects.
In Laurel, B. [Ed.]: The Art, of Human-Computer Interface Design. Reading,
MA: Addison-Wesley! i

Kirstein, P. T. (1992): Piloting of Multimedia Integrated Communications for Eu­
ropean Researchers (MICE). Proceedings of the Second Packet Video Work­
shop, Vol. 2 (Research Triangle Park, NC, Dec. 9-10, 1992). MCNC.

Neuwirth, C. M.; Chandhok, R.;,Kaufer, D. S.; Erion, P.; Morris, J. & Miller, D.
(1992): "Flexible DifF-ing in a Collaborative Writing System". In CSCW'92:
Proceedings of the Conference on Computer-Supported Collaborative Work
(Toronto, Canada, Oct. 31: - Nov. 4, 1992). New York: ACM. pp. 147-
154. >} •• '••

264 ' • ECSCW93

