
Aether: An Awareness Engine for CSCW 
Ovidiu Sandor1, Cristian Bogdan1, and John Bowers12 

1CID and IPLab, The Royal Institute of Technology, Stockholm, Sweden 
2 Department of Psychology, University of Manchester, Manchester, UK 
ovidiu®nada.kth.se, cristi@nada.kth.se, bowers@hera.psy.man.ac.uk 

Abstract: Extending and reinterpreting earlier work on the 'Spatial Model', this paper 
presents a generic model for supporting awareness in cooperative systems ('the AETHER 
model') and an implementation of a prototype awareness engine. The applicability of the 
approach is investigated by showing how some of the fundamental functionality in CSCW 
applications (e.g. versioning and access control) can be supported by the engine and by 
'simulating' some other applications from the CSCW literature The paper closes with a dis
cussion of how the model facilitates the construction of flexible CSCW systems (e.g. work
flow systems) supporting a variety of forms of awareness. 

Introduction 

The topic of awareness has received a great deal of attention in recent work in Com
puter Supported Cooperative Work (CSCW). Providing participants with mutual 
awareness of each other's activities is often seen as a important research and design 
goal (e.g. Dounsh et al., 1992; Tollmar et al., 1996). The emphasis of much of this 
research is to provide an alternative way of supporting cooperative work to that 
found in, for example, workflow systems (e.g. Glance et al., 1996) where work ac
tivities are given a formal representation in terms of some workflow model which 
often stipulates how the contributions of different participants are to be coordinated. 
In contrast, in many awareness-oriented systems, the coordination between differ
ent activities is supported by giving participants an awareness of what each other 
are doing or have done so that participants can coordinate their work themselves. 
Many researchers would hope that, not only does this provide a 'truer' and more 
'lightweight' sense for 'support', but would also make for more flexible applica-

221 

J Hughes et al. (eds.), Proceedings of the Fifth European Conference on Computer 
Supported Cooperative Work, 221-236. 
© 1997 Kluwer Academic Publishers. Printed in the Netherlands -. 

mailto:cristi@nada.kth.se
mailto:bowers@hera.psy.man.ac.uk


222 

tions which are not liable to the usability criticisms (cf. Bowers et al., 1995) that can 
be made of more procedural-oriented approaches to CSCW. 

Perhaps these arguments find their most detailed elaboration in work on Collab
orative Virtual Environments (CVEs), where Virtual Reality (VR) technology is 
used to support cooperative applications such as virtual conferencing or collabora
tive information visualization and retrieval. Most notably, the COMIC project of
fered a 'Spatial Model' of interaction in shared virtual environments (Benford et al., 
1994,1995) which has provided the basis of a number of experimental applications 
as well as influencing the fundamental architecture of at least two VR systems: 
DIVE (Carlsson et al., 1992) and MASSIVE (Greenhalgh et al., 1996). The question 
arises, however, of how this research theme is to be further advanced as a major 
constituent of CSCW endeavour. 

We would wish to argue that some of the most promising work currently on the 
theme of awareness in CSCW is concerned with one or both of two issues. First, 
there exist attempts to integrate support for awareness at fundamental levels of co
operative system architecture. We have already mentioned how the DIVE and MAS

SIVE VR systems implement awareness-oriented notions. Trevor et al. (1994) report 
on how a shared object service can be designed to facilitate user's awareness to the 
state of and changes in shared objects. Further attempts to 'build in' awareness as a 
foundational feature of cooperative systems are likely to be seen. Secondly, some 
of the concepts, models and notations elaborated in the development of awareness-
oriented applications and systems will be found to have a broader utility. As an ex
ample of this, see Rodden's (1996) work showing how support for awareness can 
be added to workflow, shared databases and other cooperative systems. 

In this paper, we attempt to address both these issues. First we show how con
cepts derived from the COMIC Spatial Model (cf. Benford et al., 1994, 1995) can 
be reinterpreted to have general utility beyond the domain of shared virtual environ
ments which was their initial application. We present how we use the model and the 
new concepts we introduce. We describe the current implementation of an aware
ness engine, called AETHER, based on the suggested model. Our goal is to recognise 
awareness at a fundamental system level and to build other functions on top of it. In 
order to demonstrate the implementation, we present some small applications that 
we have developed as well as some ideas about how other systems can be imple
mented. The paper ends with plans for future development as well as drawing out 
the general implications of our work for CSCW research. 

The Spatial Model 

As the Spatial Model, largely developed in the European Communities' COMIC 
project (1992-1995), forms the basis for our work, we will spend a little time de
scribing its essential elements. The Spatial Model supposes that objects (which 
might represent people, information or other computer artefacts) can be regarded as 
situated and manipulable in some space. The notion of space is very generally con
ceived only subject to the constraint that well-defined metrics for measuring posi-



223 

tion and orientation across a set of dimensions can be found. In principle, any 
application where objects can be regarded as distributed along dimensions such that 
their position and orientation can be measurably determined is amenable to analysis 
in terms of the Spatial Model. 

The interaction between objects in space is mediated through the relationships 
obtaining between three subspaces: aura, focus and nimbus. It is assumed that an 
object will carry with it an aura which, when it sufficiently intersects with the aura 
of another object, will make it possible for interaction between the objects to take 
place. On this view, an aura intersection is the pre-condition of further interaction 
For objects whose aurae intersect, further computations are carried out to determine 
the awareness levels the objects have of each other. The subspaces of focus and 
nimbus are intended as representing the spatial extent of an object's 'attention' and 
its 'presence'. Thus, "if you are an object in space, a simple formulation might be: 
the more an object is within your focus, the more aware you are of it; the more an 
object is within your nimbus, the more aware it is of you." and accordingly, "given 
that interaction has first been enabled through aura collision: The level of awareness 
that object A has of object B in medium M is some function of A's focus in M and 
B's nimbus in M." (Benford et al., 1994) 

It is important to note that in the above definition, awareness-levels are defined 
per medium. Thus, the 'shape' and 'size' of each of the aura, focus and nimbus sub-
spaces can be different, for example, in the visual (graphical) than in the audio-me
dium. In this way, I may be aware of the sounds made by another object but without 
being able to see it. Benford et al. (1994, 1996) go on to show how simple instanti
ations of this model can have a high degree of expressive power, for example ena
bling one to distinguish between different intuitively familiar 'modes of mutual 
awareness' on the basis of the possible relationships between A's awareness of B 
and B's awareness of A. However, perhaps the most important point emphasised in 
this work is the insistence that awareness is a joint-product of how I direct my at
tention to you (focus) and how you project your presence or activity to me (nimbus). 
Applications which recognise only one of these two components may well be expe
rienced as too intrusive or too inflexible. 

In recent work, various extensions of the Spatial Model have been reported. For 
example, Benford et. al. (1997) have introduced a concept of 'third party objects' 
which 'intervene' between objects and transform the nature and level of the aware
ness that the objects might otherwise have, and, importantly, Rodden (1996) has re
interpreted the Spatial Model in terms of spaces which can be represented as graphs 
of interconnected objects. 

The AETHER Model 

Our further development of the Spatial Model and the idea of an 'awareness engine' 
resulted from our previous studies like ©WORK (Tollmar et al., 1996) and related 



224 

projects such as CoDESK (Tollmar et al., 1995) where different awareness clues for 
supporting information sharing and casual interaction are provided. CoDESK was 
developed as an open environment where new applications could be added for spe
cific tasks like editing or communication. Other systems have been taking similar 
approaches, e.g. GROUPDESK (Fuchs et al., 1995) or TEAMROOMS (Roseman et al., 
1996). We have been using CoDESK as a 'target system' for our awareness engine, 
so as an introduction to the AETHER model we will present how the awareness en
gine would relate to the overall architecture of a system like CODESK. 

The Structure of the System 

We place the awareness engine at a basic level of system architecture (Figure 1). 
The engine is intended to provide applications with the necessary information about 
what users are doing or have done. 

Applications Application Level 

• 
CoDesk Environment Level 

" t 
Awareness Engine Awareness Level 

Figure 1 The Place of the Awareness Engine in the Structure of the CoDESK system 

The second level is that of the environment. This will include all the basic func
tionality: shared file access, access control, versioning, communication channels, 
etc. All these functions are to be built on top of the awareness engine. 

The top level is the application level where specific awareness information is 
collated and presented to the user. Applications are written based on the functional
ity provided by the second level. They can interact with the awareness engine in two 
ways: by interacting with the environment or by directly accessing the engine. 

The Semantic Network 

Traditional CSCW systems usually keep a structural network of objects. For exam
ple, a classical shared file system can be represented as a tree structure by means of 
the 'containment' relation. Other kinds of relation can have their own representa
tion. For example, ownership may be represented in terms of parameters associated 
with relevant files or folders. Inspired by systems like GROUPDESK we also inte
grate representations of users and groups, as well as the result of their actions, into 
the structure obtaining a semantic network that forms a "representation of the work
ing context" (Fuchs et al., 1995). This network made of objects interconnected by 
directed relations comprises the space in which awareness computations are done. 



225 

The objects in the network can be any entity (files, folders, applications, people, 
groups, sessions, whatever) defined by the environment and its applications. The 
awareness engine will treat all objects in the same way making no assumptions 
about the kinds of thing the objects represent. The relations that connect the differ
ent objects can also be of any type: structural relations (e.g. containment), user in
teraction relations (e.g. open file), property relations, and so forth. Once again it is 
up to the environment and its applications to define the specific type of relations. 
This semantic network creates a space in the sense similar to that suggested by Rod-
den (1996). This network will be the space in which aura, nimbus and focus are de
fined and in which the awareness levels between the different objects are computed. 

Moving Away From Events 

In many existing CSCW systems awareness information is obtained by means of 
events. User actions like file access, modifications, etc., are monitored, selected ac
cording to some criteria, and eventually recorded as event lists. For example, Fuchs 
et al.'s GROUPDESK keeps lists of events which are used to provide 'asynchronous 
awareness' even if some of the information in this event list duplicates information 
which could be derived from the semantic network. Events are discharged based on 
some distribution strategies defined in advance. As Fuchs et al. show, such event 
based systems seem to work satisfactorily for situations where workflow can be 
clearly defined in advance or if the application is known from the beginning. 

However, as we remarked in the Introduction, much of the promise of aware
ness-oriented CSCW systems lies in their potential to offer a flexible alternative to 
strictly defined workflow approaches. So it would be somewhat ironic if an aware
ness mechanism only worked adequately in tandem with a system supporting some
what rigid workflows. In contrast, systems like ©WORK are intended to address 
groups of users with highly flexible working arrangements. This would make it hard 
to define appropriate selection criteria and distribution strategies in advance, an ar
gument which is especially telling for systems (like CoDESK) which provide an en
vironment for new applications (and hence new user-actions and event-types) to be 
readily built. Thus, for the systems we are interested in, an event distribution ap
proach for supporting awareness does not seem appropriate. 

As an alternative we propose keeping all objects and relations in the net, even 
after their expiration, and using Spatial Model concepts to determine awareness lev
els for them. Instead of removing expired objects and relations we mark them as 
invalid. With this we have no need for event lists because the information that those 
contain is now in the objects and relations of the network. What we obtain is a se
mantic network containing both the actual state of the system as well as all history 
information. Of course, the disadvantage of this approach is the quick growth of the 
size of the net but later we discuss some ways for reducing this size. 



226 

Reformulating 'Time' and 'Medium' Spatially 

By keeping the invalid relations in the network, we can compute meaningful aware
ness information not only about what happens right now but also about past events. 
In this way we can say that our space equally contains two aspects: the semantic and 
the temporal. Time now becomes one of the 'dimensions' of the space, the concepts 
of the Spatial Model equally applying to it as to any other dimension. 

A cognate approach can be taken to the notion of a 'medium' of communication. 
In the original Spatial Model, medium was loosely defined based on an intuitive un
derstanding of this concept or, in Rodden's (1996) generalization, as a label on aura, 
nimbus and focus. In our case, as the space we have is not geometrical, we found it 
necessary to devote more attention to this concept. By medium we understand (a) a 
well defined type of information, (b) a subspace that has the capability to carry that 
specific information and (c) some objects that 'understand' that medium. Two ob
jects that understand the same medium can communicate though it. Information will 
be generated by one of the objects, will travel through the medium subspace and 
will be received by the second object. An analogy is radio, where an antenna trans
mits an electromagnetic wave that will propagate through all objects, even if these 
are not sensitive to it, while a radio, which can 'understand' the wave, will convert 
it to sound. For us, the medium's subspace is made of objects and relations, even if 
those do not understand that respective medium. Aura, nimbus and focus will be de
fined per medium subspace. 

Medium also has a time component. For example, a medium can define a sub-
space that contains only those objects and relations that have been valid during 
some time period. In this way we can obtain a time window. In this approach, a mo
ment can be defined by collapsing the time window. Thus, in a 'synchronous medi
um' the time moment of 'now' is achieved by filtering out everything that is in the 
past. The 'synchronous' becomes a subcase of the 'asynchronous'. We suggest that 
this will facilitate systems to provide smooth transitions between different forms of 
communication, a point we shall return to at the end of this paper. 

Aura, Nimbus and Focus 

Aura in our model is much the same as defined in the initial Spatial Model. It de
scribes the potential for collaboration between two objects. If there is sufficient aura 
intersection (e.g. collision) then there is potential interaction between them. Given 
our approach to the notion of a 'medium', aura is defined by the medium rather than 
objects themselves. Nimbus and focus in our system have much the same meaning 
as in the Spatial Model. Each object or relation can control its focus and nimbus to 
specify their 'willingness' to become aware of others or fall within their awareness. 
Given the temporal aspects of medium just argued for, it should be observed that 
aura, nimbus and focus also have a time component. Thus, a user can 'focus' on the 
present moment, on the past or even on the future. This is exploited in a prototype 
versioning system presented later on. 



227 

We considered that our engine would be most flexible if both objects and rela
tions in our network could have aura, nimbus and focus. By allowing a relation to 
have nimbus we allow users to get notified about the presence of a relation. In this 
way the user is aware not only of objects but also of the activity of others to the ex
tent that this is depicted in the relations and changes to them. As we shall shortly 
see, however, this necessitates a reconceptualization of how awareness can propa
gate through our space. 

Presence 

People and other agents can manifest a presence in the network space. Presence is 
defined as (a) the agent, (b) an application that the agent uses for manifesting its 
presence in one or more media and (c) the object where the presence is located in 
the net. For our purposes, an agent can be a person, a group of people, or a computer 
agent. We say that an application is present in a medium if it 'understands' that re
spective medium. The object defining the location is much like Rodden's (1996) 
definition of presence in non-geometrical spaces. Like him, we allow an agent to be 
present in more than one place in more than one medium at any given moment. 

Medium Consumption 

In the initial Spatial Model the level of awareness that an object A has of an object 
B in medium M is computed, if aura collision exists, as "some function of A's focus 
on B in M and B's nimbus on A in M" (Benford et al., 1994). That is, the awareness-
level is obtained through a negotiation between A and B by means of controlling 
their respective foci and nimbi. We would like to add to this a new concept: space 
as an aura, nimbus and focus 'consumer'. Our point is twofold: first, that the level 
of awareness should not depend only on the two objects but also on the nature of the 
space between them, and secondly that space cannot be seen as an empty, passive 
'container' for aura, nimbus and focus but rather become an actor in 'negotiation' 
of the awareness levels. 

Fog provides a relevant analogy. Fog consumes part of the light and the sound 
passing through it, filtering out the fine details of objects perceived through a fog-
filled subspace. Indeed, fog not only fills a subspace but also comprises a collectiv
ity of very small objects, each one with a specific behaviour and a filtering effect. 
It is this conception of space as always 'filled' which motivates our choice of name: 
AETHER. 

Accordingly, we redefine the level of awareness that object A has of object B in 
medium M, in case of aura collision, as being some function of A's focus in M 'fil
tered by' the space between A and B and B's nimbus in M 'filtered by' the space 
between B and A. This definition necessitates two remarks concerning our notion of 
spaces consuming focus and the rest. First, consumption is not necessarily symmet
rical, that is, the consumption depends on the direction of the information flow. For 
example, the consumption of nimbus from A to B can be different to the one from 



228 

B to A. Second, consumption need not have only a diminishing effect as some ele
ments in a space may also amplify aura, nimbus or focus. 

The idea of consumption relates with other concepts of the Spatial Model used 
for manipulating aura, nimbus and focus. For example adapters (Benford et al., 
1994) and third party objects (Benford et al., 1997) are mechanisms used for the 
same purpose. The main difference is that both concepts use objects for this manip
ulation. Our model is more general, space itself having this effect on aura, nimbus 
and focus, with space comprising not just objects but also their relations in a struc
tured semantic network. Objects and relations in our system thus have a double role. 
First they are the ones manifesting their presence by generating aura, nimbus and 
focus. At the same time they form the space of the model so they will become con
sumers of aura, nimbus and focus. As such, any object or relation in our system can 
be seen, and used, as an adapter or third party object. 

The consumption of aura, nimbus and focus also has a meaning in the time di
mension. After all, time does have an effect on the importance of objects and rela
tions. For example the importance of a certain user action might decrease in time; it 
might be important right now or five minutes later but it might have no importance 
at all in one month. 

According to this new definition, the computation of the aura, nimbus and focus 
becomes a negotiation between the two objects or relations (A and B), the medium 
that both of them 'understand' (M) and the space between the two. The medium M 
defines the aurae of A and B while the aura consumption is defined by the objects 
and relations on the relevant path(s) between them. If the aurae intersect at some 
point at a high enough level, then focus and nimbus computations will take place. 
A will define its initial nimbus value, then the different objects and relations on the 
path(s) between A and B will consume it. B will define the initial value of its focus 
and again the objects and relations on the path(s) between the place B is focusing 
on and A will consume it. 

The Percolation Mechanism 

Before describing the implementation, let us explain how we see aura, nimbus and 
focus 'permeating the Aether'. Although there are a number of possibilities, we 
have explored a concept of percolation. Consider a case when the aura associated 
with an object A percolates from A (its 'source') through the objects and relations 
that belong to the relevant medium's subspace.The objects and relations which are 
neighbours of A will each consume the aura to some degree, as will, in turn, the 
neighbours of these neighbours. And so forth. The process of percolation stops 
wherever the aura level decreases to some threshold or below (zero in our case). 

In Figure 2 we have an example of aura percolation. The numbers next to the dif
ferent objects show the level of aura reaching it. We can see how the aura of the ob
ject labelled 12 is consumed from one object to another, except between objects 
labelled 9 and 15 where it is amplified. The relations or objects that do not belong 
to the medium M subspace are not taken into consideration in the percolation. 



229 

O object in M's subspace / relation in M's subspace 
O object outside M's subspace @ aura / relation outside M's subspace 

Figure 2 The Percolation of the Aura (or of the Nimbus) 

We use the same percolation mechanism for nimbus but, for focus, we 'source' 
the focus not from the object whose focus it is but from the object(s) or relation(s) 
on whom focus is directed. 

O object in M's subspace / relation in M's subspace 
O object outside M's subspace ® focus / relation outside M's subspace 

Figure 3 The Percolation of Focus 

In Figure 3 the focus of object X is made of two percolations, one centred in ob
ject 8 and one in object 7. The use of the percolation for focus is like saying "I am 
interested in these and what is around them." 

Implementation 

Currently a running implementation of the AETHER awareness engine is being ex
perimented with. The engine maintains a network of objects and relations, though 
for reasons of parsimony and convenience, in our implementation the relations are 
defined as objects as well. Each relation points to two objects, a from and a to object 
to define the directionality of the relations. An object can point to none, one or more 



230 

relations. In this way, what we have called 'objects' and 'relations' so far can be 
thought of as specializations of a component concept. 

A component (object or relation) has a nimbus value and a nimbus 'strategy' at
tached. The nimbus strategy defines the way nimbus percolation will take place. 
Each component can also have one or more focus points, each of them with a focus 
value and a focus strategy. It is up to the environment or any application to set the 
focus point(s), the nimbus/focus values and to set or modify the nimbus/focus strat
egies. A percolation strategy, be it for nimbus, focus or aura, is defined as a function 
that answers the question "is object X part of object Y's nimbus/focus/aura?" 

A medium in our implementation has to define (a) the medium's subspace and 
(b) the aura percolation strategy. The subspace is defined by means of a function 
that answers the question "is object X in medium M's subspace?". The presence of 
an agent is implemented by using a presence object. This object is connected to (a) 
a user, group or software agent by a 'represents' relation, (b) an application by a 'us
es' relation and (c) a component in the net that defines the location by a 'visits' re
lation. Each component also contains the definition of the way in which aura, 
nimbus and focus are to be consumed. In the case of relations, consumption can vary 
according to the direction of percolation. Consumptions are defined as strategies 
that answer the question "how much of the aura/nimbus/focus value will remain?" 

As we see, for each object the environment or the applications have to define a 
number of percolation and consumption strategies. In order to simplify things we 
have developed a number of basic strategies. These strategies can be logically com
bined in order to obtain more sophisticated ones. At the same time, any application 
can define new strategies rather than combine the pre-defined ones. In this way, it 
is hoped that the engine is both simple to use and flexible. An example of a pre-de
fined strategy is the 'now' medium subspace. The answer to "is object X in medium 
M's subspace?" will be "yes, if it is valid". 

The Algorithm 

Now we can define the awareness level computation algorithm. The computation is 
done for each medium separately. For a given object or relation (source), the engine 
starts from its neighbours as the first set of candidates, with a given initial strength. 
Each candidate is then checked as to whether it included in the medium's subspace, 
by asking the medium's subspace strategy. If it is, then the aura (defined in the me
dium), nimbus or focus (defined in die origin object) strategy is asked to confirm 
that candidate. If it gets accepted then the candidate's consumption strategy is asked 
to compute the new strength that reached it. If there is some strength left, the can
didate becomes part of the computed subspace, having its membership character
ized by this strength. Its neighbours will be considered as candidates in the next 
step. This process continues until no other candidates can be considered. 

The awareness level between two objects A and B is defined as four strength val
ues: A's focus on B, A's nimbus to B, B's focus on A, B's nimbus to A. If A's and 
B's aurae don't have common components (i.e. there is no adequate aura intersec-



231 

tion), these values are null. After all the computations have been done, each pres
ence object will get a vector of all components with whom it has aura collision and 
the respective awareness levels. As the intention is to provide as much generality as 
possible, the decision on how to interpret the four values is left to the application in 
question. One way would be to interpret them according to the 'modes of mutual 
awareness' as defined in Benford et al. (1994) and Bowers (1993). 

The computation is repeated after any change in the network, that is after any 
user action that affects the state of the system. In order to reduce the data traffic be
tween the engine and the applications, AETHER keeps track of the awareness level 
between every presence object and the other components. After each re-computa
tion the new awareness levels are compared to the old ones and changes are reported 
to the applications. 

We have defined an Application Programming Interface (API) for the AETHER 

engine to support communication between it and CoDESK or the applications. The 
engine API is a very simple one, letting applications add, validate or invalidate re
lations and change strategies, and in the other direction, allowing the engine to an
nounce awareness levels to the applications. 

Computational Considerations 

It is obvious that the AETHER model will raise issues concerning computing time 
and network size, especially if relations and objects continue to be stored after their 
invalidation time. We can address the computational complexity problem in several 
ways. The engine currently makes use of a number of techniques to reduce the 
number of computations, for example by performing multiple changes in the net be
fore awareness level recomputation. Parallelization is another possible approach. 
As calculations in different media (and calculation of nimbus and focus in the same 
medium) can proceed independently of each other, CPUs can be allocated on a per 
medium (or per awareness-subspace) basis. 

Computation time can also be facilitated by carefully managing the size of the 
network. In this regard, we suggest that from time to time certain objects and rela
tions can be removed in a process much like garbage collection. The question is 
which objects and relations are important to maintain and which are of lesser sig
nificance and can be removed. Ultimately, 'importance' can only be properly de
fined at the application level, though we do provide a general technique at the 
awareness engine level which can be used quite flexibly in default of specific re
quirements made by the application. 

In our model, the importance of a component is defined by its nimbus in time and 
our garbage collection algorithm periodically applies some consumption of this 
nimbus in terms of a function which reduces its value according to the distance in 
time since invalidation. The engine then removes the components whose nimbus 
falls below a given threshold. The system also removes relations connected to ob
jects that have just been deleted and, if this now leaves objects without relations, 
then these are deleted too. 



232 

While this algorithm seems to work well for the apphcations we have experi
mented with, there is clearly scope for refining it. For example, we could relate the 
importance of an object to the number of times it has been 'visited' by users. An 
object visited often may be more important than one not visited at all. A visit could 
have the effect of incrementing the nimbus of the object, thus tending to increase its 
longevity. 

Applying the AETHER Model 

In order to demonstrate the feasibility of our approach we have developed a number 
of small applications. We have primarily concentrated on showing how services of
ten thought to be fundamental to cooperative applications can be readily supported 
in the AETHER model, in particular, the management of versioning, history and ac
cess control. To demonstrate the generality of our model we have also simulated a 
version of Isaacs et al.'s (1996) PIAZZA prototype awareness system. We briefly dis
cuss these applications in turn. 

Versioning and History 

Some kind of versioning is normally needed in CSCW applications. We will show 
one way of implementing it with the awareness engine. Each version of a document 
(say) is represented as an object in our net. A 'is-previous-version-of relation binds 
the different versions into a version tree. A user can access the latest version or can 
focus on some previous time moment, by selecting the appropriate focus strategy, 
and access the versions that existed at that moment. Users could also have access to 
any other information about these documents, like for example who changed them 
and who's read them, by controlling nimbus and the focus. 

In many cases, it is likely that after a while the number of versions would be too 
big and some would have to be removed. The point would be to remove the minor 
versions and to keep the important ones. For this, the versioning module would have 
to set the nimbus of the different versions in such a way that by applying the garbage 
collection algorithm the desired effect would be obtained. One way to do this would 
be to relate the level of nimbus in time with how much the new version differs from 
the previous one. In case of minor changes the nimbus would be small, while exten
sive changes would generate a high nimbus and would remain in the system for a 
long time. 

History is a related problem but it refers to user actions over time instead of doc
uments. Very many history events can be deduced from the time information of the 
different relations that represent user actions. By setting the focus strategy to some 
moment in time the user would be notified about the state of the system at that time 
around the point of focus. By displaying all the changes in the objects and relations 
(creation or invalidation) between two moments in time we could reconstruct a his
tory of events. It may be that some components have been removed from the net-



233 

work but, as important events tend to be more long-lasting, this method of 
reconstructing history should be satisfactory for many purposes. 

Access Control 

Another important functionality needed in CSCW is access control. An interesting 
way to do this in the AETHER model is to have access control media. For example 
we could define a 'Top Secret' medium. The boundaries protecting an area that con
tains sensitive information could consume completely the aura, nimbus and focus 
of all other access media, except for the 'Top Secret' one. Only users that are al
lowed to use this medium would be able to notice the presence of those objects and 
access them. In this approach, boundaries can be realised by particular kinds of ob
jects in the net which consume aura and the rest and can exert constraints on navi
gation through the net (cf. Bowers, 1993). 

Another interesting approach would be to build on a suggestion in Benford et al. 
(1996). A 'Foyer' could be used for entering the system. One of the functions of the 
foyer is to "enhance security by providing a single point of entry... within which in
coming and outgoing people are made publicly visible and hence accountable". The 
system could have such an entry point where all users would have to start and at 
which their capabilities (or 'strategies' in the sense used above) for manipulating 
and consuming aura, focus and nimbus would be defined. A guest, to give just one 
possible example, may have a more limited focus (so that they tend to access less) 
but a larger nimbus (so that other users are likely to be made aware of them and their 
activities) than a 'registered user'. As these capabilities can be defined on a per me
dium basis, a very flexible approach to access control is possible through the AE
THER model. We refer to a given profile of awareness manipulation and 
consumption strategies as a 'character'. While taking on a specified character may 
be necessary to gain full access to a certain medium subspace, this is much more 
flexible than traditional approaches which typically give and withhold 'access 
rights' to 'roles'. 

A Simulated PIAZZA 

Our final test of the feasibility of the AETHER model and our awareness engine im
plementation is a 'simulation' of PIAZZA, an application prototyped by Isaacs et al. 
(1996), which provides users with information concerning "others who are doing 
similar tasks when they are using their computers, thereby enabling unintended in
teractions" (p. 315). PIAZZA comprises a number of sub-applications, two of which 
we have reimplemented using the concepts of the AETHER model: GALLERY which 
allows the user to get information about other group members, and ENCOUNTER, a 
component which can be added to any application and which makes users aware of 
others who may be "nearby" (see Isaacs et al., p. 319-321). 

Our GALLERY is an application that sets its focus on the people selected by the 
user. The application uses a percolation strategy that will define the focus in terms 



234 

of those relations around a person that show their current activities. When such ac
tivities exist, the application will present to the user what the others are doing and 
where in the network space they are. Our version of ENCOUNTER is a file browser 
that, in addition to traditional functionality, informs the user about the presence of 
others in the same subdirectory of the file system. The application sets the focus 
around the directory where the user is located and uses a strategy that monitors any 
other presence in that place. Our treatment of temporal relations as also being part 
of the network enables us to entertain extensions of Isaacs et al.' s work so that users 
can become selectively aware of others who have shared the same directory space 
at different past times. Accordingly, an ENCOUNTER application built upon our 
awareness engine may be able to support a richer set of "unintended interactions" 
and social encounters than Isaacs et al. currently discuss. 

Discussion 

We hope that we have demonstrated the feasibility of the AETHER model as a source 
of concepts for an awareness engine for CSCW. We believe that several forms of 
basic functionality for cooperative applications can be readily and flexibly imple
mented in an AETHER-style engine and have outlined our approach to versioning, 
history and access control. We have also shown how an existing prototype (Isaacs 
et al.'s PIAZZA) can be reimplemented (or 'simulated') in the AETHER awareness en
gine. As our approach can provide flexible solutions for basic CSCW functionality 
as well as have the capability of simulating other systems, we have a degree of con
fidence in both the relevance and generality of the AETHER model. 

Future Work 

In future work, we will investigate further applications of the model. For example, 
it is easy to see how the basic functionality we have discussed could be combined 
in, say, a flexible approach to workflow support. Rodden (1996) observes that most 
workflow systems depend at some level on a graph specifying transitions between 
states in the workflow. Such graphs can constitute a graph-space over which aura, 
focus and nimbus can be defined and manipulated. In this way, participants to a 
workflow can be made aware of activities 'upstream' which are about to become 
their responsibility as well of activities 'downstream' which follow on from what 
they have completed. In AETHER, we would add to the graph the documents in their 
various versions, representations of the users themselves, and any other object or re
lation of significance, and do so while the workflow is being enacted. In this way, 
the structure of a workflow can dynamically unfold and be enriched over time, with 
participants being present in and aware of various subgraphs as determined by the 
awareness computations. This approach has two attractive consequences. First, 
workflow graphs are no longer seen as stipulations of the states of the workflow. 
They become instead 'seeds' for a semantic net which will be added to as the work-



235 

flow unfolds. Indeed, in some implementations, the pre-defined states might even 
get garbage collected if they are infrequently visited, that is, if they become irrele
vant to the way the work has turned out. Secondly, as participants have points of 
presence within the graphs, which they themselves add to and manipulate their 
awareness within, the AETHER model could encourage workflow systems which 
support 'workflow from within', the self-organising and emergent structuring of 
work in response to contingencies, and not just mandate 'workflow from without', 
the execution of pre-defined procedures no matter what (cf. Bowers et al., 1995). 

Other work on the AETHER model and our implementation of it will be devoted 
to optimising the performance of the engine by exploring different kinds of perco
lation and garbage collection algorithm. We will also need to develop methods for 
'calibrating' these algorithms for different applications, so that, for example, the en
gine does indeed identify 'important' components and accord them longer life in a 
manner which matches user-requirements. Once this has been achieved and an ap
propriate application developed (perhaps a workflow application within the 
CoDESK environment), a program of user-evaluation will be necessary. We also in
tend to investigate parallel implementations of our algorithms. Experience with this 
would also inform further iterations of development with conventional machines 
(e.g. the appropriate use of background processing for awareness computations). Fi
nally, we intend to explore ways in which the model can be mixed with geometrical 
models such as those associated with VR systems to obtain hybrids or in order to 
use geometrical (2D or 3D) interfaces to our model. 

Awareness Beyond the Synchronous/Asynchronous Distinction 

We want to finish by drawing out a general conclusion for CSCW research from the 
AETHER model. We remarked above that we treat time as another dimension in con
structing the graph 'spaces' over which awareness computations are done, enabling 
various 'awareness windows' on past events to exist. Equally, by manipulating the 
form that focus takes, a user can broaden or restrict the extent of objects and rela
tions of potential relevance to their work. This approach enables us to capture within 
a unified framework all of the forms of awareness in cooperative systems identified 
by Fuchs et al. (1995): coupled-synchronous (what is currently happening in the ac
tual scope of work); uncoupled-synchronous (what happens currently anywhere 
else of importance); coupled-asynchronous (what happened in the actual scope of 
work since the last access); uncoupled-asynchronous (what happened anywhere 
else of importance since the last access). 

'Actual scope' means, in our model, 'being in the focus of the user', 'of impor
tance' means 'the user is in the nimbus of an object or a relation', 'currently' means 
'the time focus is now', and 'since the last access' means 'in the time focus between 
the user's last access and now'. By manipulating the aura, focus and nimbus of the 
user and of the objects of the system, the awareness engine can generate awareness 
information for all these situations. But more than this. By translating the coupled-



236 

uncoupled and synchronous-asynchronous distinctions into concepts which admit 
of continuous variation, we can identify all the 'points in between'. 

By offering a framework in which synchronous and asynchronous awareness can 
be supported equally, we 'deconstruct' this distinction in a unified approach. This 
is a powerful conclusion because the distinction between synchronous and asyn
chronous is used so very commonly - often as a way of distinguishing between dif
ferent kinds of system. While the distinction may be clear at system levels where 
different communication protocols are discussed, perhaps we should not crudely 
transpose the distinction so that it classifies different types of awareness, still less 
different types of cooperative work. What matters to cooperative work as it is expe
rienced, we suggest, is the integration of different streams of work which may be 
on many different time scales and show varying degrees of relevance to the matter 
at hand. Having a level of system architecture where different forms of awareness 
can all be supported together seems most appropriate to this image. The AETHER 

model and our experimental awareness engine comprise our attempt at this. 

References 
Benford, S., Bowers, J., Fahldn, L., Mariani, J. and Rodden, T. (1994): "Supporting Co-operative 

Work in Virtual Environments", The Computer Journal, 37, 8, pp653-668. 
Benford, S., Brown, C , Reynard, G and Greenhalgh, C (1996)' "Shared Spaces' Transportation, 

Artificiality, and Spatiahty", in Proc. ofCSCW'96, Boston, ACM Press, pp. 77-86 
Bneford, S , Bowers, J., Fahldn, L., Greenhalgh, G, Mariani, J and Rodden, T (1995): "Networked 

Virtual Reality and Cooperative Work", Presence, vol. 4, no. 4, pp. 364-386 
Bowers, J. (1993)- "Modelling Awareness and Interaction in Virtual Spaces", in Proc. of the 6th 

MultiG Workshop, Stockholm 
Bowers, J , Button, G. and Sharrock, W. (1995). "Workflow From Within and Without Technology 

and Cooperative Work on the Print Industry Shopfloor", in Proc of ECSCW95, Stockholm, 
Kluwer Academic Publishers, pp. 51-66. 

Dounsh, P. and Bellotti, V. (1992). "Awareness arid Coordination in Shared Workspaces", in Proc 
ofCSCW'92, Toronto, ACM Press, pp. 107-114. 

Fuchs, L., Pankoke-Babatz, U. and Pnnz, W. (1995): "Supporting Cooperative Awareness with Lo
cal Event Mechanisms: The GroupDesk System", in Proc ofECSCW'95, Stockholm, Kluwer 
Academic Publishers. 

Glance, N., Pagani, D. and Pareschi, R (1996): "Generalized Process Structure Grammars (GPSG) 
for Flexible Representations of Work", in Proc. ofCSCW'96, Boston, ACM Press 

Greenhalgh, C and Benford, S (1996). "MASSIVE: A Virtual Reality System for Tele-conferenc-
ing", ACM Transactions on Computer Human Interaction, ACM Press. 

Isaacs, E , Tang, J. and Morris, T (1996): "Piazza: A Desktop Environment Supporting Impromptu 
and Planned Interactions", in Proc. ofCSCW'96, Boston, ACM Press, pp. 315-324. 

Rodden, T (1996). "Populating the Application A Model of Awareness for Cooperative Applica
tions", in Proc ofCSCW'96, Boston, ACM Press, pp. 87-96. 

Roseman, M. and Greenberg, S (1996)- "TeamRooms: Network Places for Collaboration", in Proc 
ofCSCW'96, Boston, ACM Press, pp. 325-333 

Tollmar, K. and Sundblad, Y. (1995)- "The Design and Building of the Graphical User Interface for 
the Collaborative Desktop", Computer and Graphics, vol 19, no. 2, 1995. 

Tollmar, K , Sandor, O. and Shomer, A.(1996): "Supporting Social Awareness @Work - Design and 
Experience", in Proc. ofCSCW'96, Boston, ACM Press, pp. 298-307. 

Trevor, J , Rodden, T. and Manam, J. (1994): "The Use of Adapters to Support Cooperative Shar
ing", in Proc ofCSCW94, Chapel Hill, ACM Press, pp. 219-230. 


