
S. Bodker, M. Kyng, and K. Schmidt (eds.)- Proceedings of the Sixth European Conference on 
Computer-Supported Cooperative Work, 12-16 September 1999, Copenhagen, Denmark 
© 1999 Kluwer Academic Publishers. Printed in the Netherlands 61 

AREA: A Cross-Application 
Notification Service for Groupware 
Ludwin Fuchs 
Boeing Mathematics & Computing Technology, USA 
email: ludwin.fuchs@boeing.com 

Abstract: This paper presents AREA, an integrated synchronous and asynchronous 
notification service for awareness information. AREA uses a semantic model of the client 
applications to support cross-application awareness. The service is based on the 
dichotomy of interest and privacy Notifications of user activities are a function of 
relevance in the current work situation and the privacy requirements of the involved 
users The paper motivates the AREA framework and discusses the system in terms of 
its formal modeling capabilities and its operational aspects This is followed by practical 
implementation considerations addressing the role of AREA as a groupware 
infrastructure Finally, a prototype groupware application is presented, which uses the 
AREA service to support user awareness 

Introduction 
The Nineties have seen an important paradigm shift in the usage of computer 
technology. Systems are no longer exclusively seen as number crunchers helping 
us to solve difficult problems. Instead, driven by the enormous growth in network 
bandwidth and the ubiquity of the Internet, the computer evolves more and more 
into an inhabited information space, in which we interact with other people. 

One of the most obvious manifestations of this is denoted by the term 
awareness the ability of the technology to expose the activities of the people in 
the electronic space. In collaborative environments the role of awareness for 

mailto:ludwin.fuchs@boeing.com


62 

coordinating work activities has been shown in numerous studies (see e.g. Heath 
and Luff, 1992, Rogers, 1993). But support for awareness is not just important in 
the work environment An obvious proof to this is the commercial thrust, which 
has been initiated more recently by the need for awareness on the Internet An 
example is ICQ, an Internet buddy list application, which has led the 1998 
shareware download surveys!for months with more than 10 Million estimated 
users online. 

This paper focuses on collaborative environments as constituted by a shared 
information space and a variety of independent tools being used individually as 
well as jointly among the group members The paper proposes treating awareness 
as a global, i.e. application independent requirement in such an environment 

Based on these considerations' the paper presents AREA, an integrated 
synchronous and asynchronous notification service for awareness information 
AREA supports cross-application, awareness using a model of the clients' 
semantics to capture the awareness-related operational aspects of the applications. 
The model explicitly addresses the potential for conflicts of awareness and 
privacy. Notifications of user activities are"a function of relevance in the current 
work situation and the privacy requirements of the involved users 

The emphasis of the paper-is to motivate the AREA framework and to discuss 
the system in terms of its formal modeling capabilities and its operational aspects. 
This is followed by practical implementation considerations about the role of 
AREA as a groupware infrastructure Finally, a prototype groupware application 
is presented, which uses the AREA service to support user awareness. 

Design Issues :;- '• 

Supporting group awareness creates difficult design problems for developers of 
distributed collaborative applications, problems with both technical and 
organizational dimensions.. , . , 

Technically, the developer is faced with the heterogeneity of applications. 
Groupware can only be commonly characterized by the weak incentive to support 
collaboration between a number of users. Workflow systems, shared design tools, 
email, collaborative web applications, and document management systems all are 
first class groupware systems. These technologies lack a common base that could 
be abstracted out to form the core of a formal model of groupware and eventually 
inform the design of awareness support. Supporting awareness in a shared text 
editor is a fundamentally different problem than supporting awareness in a 
persistent discussion space such as Lotus Domino. 

A further challenge is introduced by the global nature of the awareness 
problem collaborative environments consist of a multitude of tools and 
applications. Performing a collaborative task rarely is a continuous and concerted 
activity and almost never maps to a single technology that could support it. 



63 

Instead, working together is opportunistic: users frequently switch between a 
number of tools running in parallel and also the shared information crosses the 
boundaries of applications., Collaborating requires working in synchronous and 
asynchronous mode, frequently switching- between modes, or even working in 
both modes at the same time. We talk on the phone .while we browse our email or 
look up information in a shared discussion database. Writing a shared document 
involves working at different times on individual parts followed by meetings to 
discuss and merge them together.-Supporting awareness thus becomes,a global 
issue. What we really need is an integrated view on the activities in the work 
environment as a whole, covenng many applications, rather than just one. Even if 
we have a good formal model of a particular groupware application domain, the 
provision of awareness will be restricted to the boundaries of a single tool and 
lack the global perspective. 

. Global awareness support is not only difficult to achieve architecturally, it also 
introduces new problems. If information about user activities is collected and 
disseminated in the whole work environment, it is likely to overload the user with 
irrelevant and out-of-context notifications. To prevent this, users need a way to 
define their information needs in terms of the work they are performing The 
same event can be highly important for one user and completely uninteresting for 
another user in the same situation. Similarly, an event may be important for a user 
in some situation and irrelevant for the same user in another 

Supporting individual awareness leads to a number of socio-technical conflicts 
These result from two constellations of conflicting goals between the individual 
user and other users or the group as a whole: (1) the user's demand for privacy 
creates a conflict with other users' or the group's demand for awareness and 
(2) the user's goal to reduce information overload clashes with other users' or the 
group's goal to establish common reference. 

The first issue also has organizational and legal dimensions, in many countries 
data protection laws restrict the organizational usage of personal data such as 
awareness information. The second issue is particularly important in the group 
context Only if awareness of activities provides a common reference to all 
members of the group can it be a vehicle for coordination in a team environment 
For example, a design team working on a model of a particular section of an 
airplane often faces many interdependencies between the individual sub-parts. 
Changing one part can violate constraints imposed by another part maintained by 
other group members. When a designer changes a part of his model it is critical 
that these changes are reliably visible to the other group members in order to 
minimize disruption caused by conflicting changes. 

If users can individually tailor awareness notifications, others can no longer be 
certain that their actions are perceived by the group as a whole, i.e. the activities 
no longer form a common reference in the group. Technology intended to support 
awareness needs to address this fundamental tradeoff. 



64 

Awareness Frameworks 

The inherent complexity of supporting awareness as outlined in the last chapter 
has fueled the development of awareness frameworks that provide a simplified 
model of collaboration for particular application domains. They offer basic 
mechanisms that can be used by systems designers in order to make the actions in 
the environment visible to others. The following section provides a brief review 
of various awareness frameworks. ! 

A number of approaches address synchronous collaboration. Gutwin et al. 
(1996) describe a shared editing environment providing awareness based on 
multi-user GUI mechanisms. The system offers a number of awareness widgets 
showing the current focus of others in the application using distortion techniques 
Activities close to the user's own focus are visible whereas those parts of the 
document with no ongoing activities are only visible in a global minimized layout 
view. Thus the authors show that an overview in its physical sense can support 
user awareness The design of such multi-user interface components can be 
largely supported by toolkits such as GroupKit (Roseman and Greenberg, 1992) 
or Habanero (Chabert et al.,' 1998). More recently, Smith and O'Bnan have 
proposed a similar GUI-oriented "approach for awareness in 3D virtual 
environments (Smith and O'Brian, 1998). 

While the user interface approach provides useful mechanisms for developing 
synchronous relaxed WYSIWIS applications, it doesn't address awareness as a 
groupware infrastructure issue. This is one of the goals of the Notification Service 
Transport Protocol (NSTP; see Patterson et al., 1996), an application independent 
notification protocol for synchronous groupware. NSTP is based on a client-
server model, where the server maintains a number of places managing the shared 
state. Clients can enter any number of places. They can manipulate the shared 
state and receive automatic notifications whenever state changes occur in the 
places they have entered. NSTP ,is a lean framework strictly focusing on 
efficiency. Consequently, it is free of any assumptions concerning the 
application's semantics Another synchronous application-independent 
notification service similar to NSTP is Corona (Shim et al., 1997) Unlike NSTP, 
Corona provides a persistent data store for the shared state and adds more 
flexibility for updating the shared state. 

All awareness architectures, discussed so far focus on synchronous groupware 
Among the asynchronous models, GroupDesk, a shared workspace prototype, 
implements awareness using relationships between artifacts in the work 
environment to notify users about activities (Fuchs et al., 1995) The 
asynchronous behavior in the < GroupDesk awareness model results from 
distributing events between the artifacts and storing them persistently. 
Notifications are triggered as soon as interested users access the artifacts The 
usage of object relations has been adapted in the Aether model to support 



65 

asynchronous awareness in 3D populated information spaces (see Sandor et al., 
1997). A further asynchronous awareness model is implemented in the Interlocus 
prototype (Nomura et al., 1998). Interlocus monitors individual user activities and 
creates snapshots of the objects when the user makes changes. Awareness is 
provided by intelligently merging individual snapshots and providing 
chronological views on the documents in the workspace. 

The AREA Awareness Model 

In the following sections the AREA awareness model is introduced Similar to 
NSTP, AREA is an attempt to provide an awareness infrastructure component for 
collaborative environments In contrast to NSTP, AREA is not only an 
application development environment but may also be used by preexisting 
groupware tools. Similar to GroupDesk, AREA implements situation-oriented 
awareness based on relevance relationships among the shared objects. Unlike 
GroupDesk, AREA offers an open service interface enabling multiple 
applications to specify event distribution, user-defined interest and privacy 
specifications, as well as awareness-related group facilitation mechanisms. 

hi V.', hi hi 
I t t F I 

Modify user model „,,„„, »„„.;„„, „ 
•Get event information Client Appl.cat.ons 

Figure 1: Client-server communication in AREA 

AREA applies a client-server architecture, where the server manages the shared 
state and clients receive automatic event notifications. The shared state consists of 
a static description of the application semantics, a dynamic user model1, and a 
persistent event pool. Client applications can issue requests to create events or to 
access the user model. Create-event requests cause the server to add a new event 
to the event pool and issue notifications to other clients. 

AREA uses the semantic model of the applications and the user models to 
determine which clients receive an event notification. This decision is based on 
the principle of mutual exclusion of awareness and privacy in the following way: 
a user A can be aware about the actions of another user B if A's user model 
specifies interest in the action and there are no conflicting privacy requirements of 
B that prevent the notification. 

Note that the notion of a user model in AREA does not mean the system is making inferences based on user 
actions at the application's GUI, as it is usually the case in adaptive systems The model is solely 
updated based on explicit requests issued by the application 

http://Appl.cat.ons


66 

Approach , • ' . , , , ; . 

AREA supports awareness by providing notifications about activities performed 
by users in any of the client applications. AREA captures activities in terms of 
events. As users perform activities in the collaborative environment, the system 
creates new events describing these activities For each new event AREA 
determines all users who will be notified about the event by evaluating all user 
profiles according to their interest specifications and matching them against the 
privacy requirements of the performing actor This is illustrated in Figure 2: 

(J) Application issues a (9) AREA creates a new event (3) AREA notifies other clients 
CreateEvent Request and adds the event to asynchronously about 
as a result of a client the event pool the new event, based 
activity ' ' on the client's user model 

' . and current activities 

Figure 2 Event notification in AREA' ; ' 

The notions of interest and privacy are at the core of the AREA awareness 
framework Both terms can be defined very specifically or may be kept very 
general. An actor's interest can cover a broad range of situations common to the 
kind of work she performs. It can specify a higher degree of importance for more 
special situations or it may completely exclude events for some situations. 

The Application Model , , , 

The awareness framework in AREA is based on four basic model components: 
actors, relations, events, and artifacts The following paragraphs describe each of 
these components and discuss how they can be used to describe the application 
semantics • ,, • . 

Actors 

Actors denote users of the, client applications. An actor is usually a real person 
working in the environment but any actively performing entity can be registered 
as an actor in AREA, e.g a software agent. Actors are equipped with a profile 
describing their interest in the actions of others as well as their privacy 
requirements. , , 

Artifacts ' . 

Each action in AREA involves an actor and an artifact, which is the object of the 
action In document management systems artifacts typically consist of documents, 
discussion items, or folder hierarchies. In a technical design application for 

i 



67 

building airplanes they might consist of drawings, geometric objects, or more 
abstract entities like constraints that need to be met Artifacts may have a long 
lasting life cycle (e g a jointly produced research paper) or they may exist only 
for a brief time period, such as a telepointer in a multi-user brainstorming tool. 

Header Implementation Makefile Grammar 

Figure 3: A simple artifact class hierarchy for a software development application 

Artifacts belong to classes The system defines a class hierarchy, which is 
shared among all applications using the system. Figure 3 gives an example of a 
class hierarchy for artifacts that might appear in a software design environment. 
Note that the primary criterion of introducing a class in the hierarchy is not 
sharing but rather whether the usage of the artifact is worth being aware of. Thus, 
although a news reader rarely is used collaboratively it can be interesting for 
group members to be aware that another is reading news and hence shouldn't be 
disturbed. 

Applications may extend the class hierarchy with their own specific classes or 
they may reuse existing classes. For example, a shared drawing application could 
add its own artifact classes for application specific items, .such as the various 
drawing tools and filters but it can reuse the classes for JPEG- and GIF-images, 
already defined by another application. 

In this way, the class hierarchy maintained in AREA forms a unified set of 
classes for all artifacts in the work environment that are suitable candidates to be 
aware of. Note that AREA does not actually maintain instances of the artifact 
classes The class hierarchy in AREA is only an abstraction for the application 
entities for the purpose of describing awareness behavior. AREA only maintains 
artifact references (e g as attributes of events). The actual instances only exist in 
the applications and will almost, certainly belong to a completely different 
application-internal class hierarchy. The application may not even be object-
oriented at all 

Events 

Events formally describe actions performed on an artifact. Each event has at least 
3 attributes: the actor responsible for the event, the corresponding artifact 
reference, and a time stamp Similar to the artifacts, events are structured in a 
class hierarchy that defines the semantics of the events. An application can define 



68 

new event classes. A new class inherits the attributes of its parent class and may 
add additional attributes. i • 

Event 

Modification '• Activity 

ChangeAttnbute ChangeDocument Move ChangeContent Edit Presence ReadNews 

• . : / \ 

Add Remove 

Figure 4 An example for an event class hierarchy 

Figure 4 shows an example of a suitable class hierarchy for events, which users 
might want to be aware of in the design environment example. Note that not all 
events can occur on all artifacts. For example, ChangeContent events can only be 
created by compound objects like folders. AREA keeps a mapping between event 
classes and the artifact classes,- which can create these events. 

Formally, events in AREA denote state changes and thus do not have a 
temporal duration But the system defines a specific class of events that can be 
used to describe actions covering a continuous time span. These are called activity 
events. Activity events consist of a begin-event and a matching end-event marking 
the time frame of the user activity. In AREA the term "being active" implies that 
the system has created a begin-event but not yet received a request for an end-
event. AREA tracks begin-events in an activity list and uses this information to 
determine if actors should be notified synchronously. 

Relations 

AREA uses relations to describe collaborative interdependences in the 
application domain Relations are always l:n and can only exist between artifacts 
In contrast to artifacts and events, AREA does not define an extensible class 
hierarchy for relations. An application can only define relation instances, which 
may be assigned to one or more of the following predefined groups of relations: 
components, compositions, and situations. 

A component defines a part-of relationship between two artifacts. A 
composition usually is the inverse relation of a component and yields the 
aggregate for a given part. A formal requirement in AREA is that for each 
component there exists at least one composition, which is denoted as the inverse 
of the component. Note that different component relations can be assigned the 
same inverse relation. 

Situations are relationships between artifacts expressing relevance in terms of 
collaboration For a given artifact a particular situation defines all other artifacts 
that share a common awareness-relevant relationship with this object. Thus, the 



69 

set of situations for an artifact should be defined such that it makes sense to be 
aware of events of this artifact whenever the user accesses another artifact 
belonging to the situation 

Relation If available for an artifact it yields Is defined for Relation groups 

Identity the same artifact all artifacts Component, Composition, Situation 

Containedln all superior folders all artifacts Composition, Situation 

Contains the content artifacts folder artifacts Component 

Dependents the design artifacts with a software 
dependency 

implementations Situation 

Table 1 Some example relations 

Table 1 shows an example of 4 relations, which could be used in the software 
environment example. The Identity relation is defined as component, 
composition, and situation simultaneously (since each artifact is a part as well as a 
composition of itself). All relations except the Contains relation are defined as 
situations, since each defines a useful awareness situation for the notification of 
events. 

The User Model 

Having introduced the four basic components of AREA, we can now turn to the 
user model and the operational aspects. A user model consists of a list of interest 
specifications and a list of privacy requirements. Interest specifications have four 
parts: 

• The event description specifies the actions the user wants to be aware of. It 
consists of a predicate over the set of available event classes and attributes. 

• The scope defines the space of artifacts for which the description is valid. This 
in turn involves a predicate expression over the artifact class hierarchy and a 
component relation. The predicate is evaluated against the artifact raising a 
new event. The role of the component is to enable indirect specifications, e.g. 
for all artifacts in a container This introduces additional flexibility for 
defining interest descriptions. 

• The situation defines when notifications about the events shall be issued to the 
actor. They only consist of a situation relation. 

• The intensity consists of a discrete value that will be interpreted by the 
application to determine how a notification should be performed at the GUI. 



70 

The following figure shows an example of two interest descriptions. 

Event description Scope Situation Intensity 

Figure 5 Two example interest descriptions in a user profile 

The first description defines interest in all change-events.2 The scope of the 
first description has been specified indirectly: it covers the content of any folders 
A notification of a matching event occurs when the user accesses the artifact 
creating the event (since the situation is the Identity relation). The value of the 
notification intensity is 1, i.e. the event notification should be performed in the 
lowest intensity. The second interest description defines interest in the activities 
of user John Smith. The scope of this description only covers one particular 
artifact "GMD-Folder" The situation Immediately is a predefined symbolic 
situation relation. If it is used in an interest description, a notification takes place 
immediately or as soon as the actor enters the environment 

Event Notification 

The sum of all interest descriptions in all user models drives the event notification 
in AREA. Figure 6 illustrates the notification algorithm: 

Figure 6 Determining the notification situations for new events 

The' operator < yields the value true, if the left operand is a base class of the right operand e and a are 
keywords that are matched against the new event and the artifact creating the event, respectively 



71 

When an application sends a create-event command AREA addsa new event 
instance of the requested class to the event pool and fills in the values of the 
attributes At the minimum these consist of the reference of the affected artifact 
(subsequently called origin), the actor, and a time.-stamp. 

The next step consists of determining the set of matching user profiles, whose 
scope covers the origin. These are determined by examining all composition 
artifacts of which the origin is a component A user profile is valid if the 
following conditions are met: (1) the event description matches the new event, 
(2) the predicate expression in the scope-component evaluates to true, and (3) the 
component-relation in the scope-specification is the inverse of • the • current 
composition. 

With this, each of the composition artifacts to which the origin belongs can be 
associated with a list of matching interest descriptions These interest descriptions 
determine the actual situation artifacts that upon access will trigger a notification 
of the new event. They are determined by applying the situation relations in the 
remaining interest descriptions on each composition artifact. . • 

The final result of this approach is a list of situation artifacts, each of which is 
associated with one or more actors to notify and a corresponding maximum 
intensity value for the notification. At this point a synchronous event notification 
takes place for all actors who are listed as being active on one of the situation 
artifacts in AREA's activity list. For all other actors AREA saves the result of the 
event distribution and notifies them asynchronously as soon as they perform an 
activity on one of the situation artifacts 

Pr ivacy 

In order to motivate the privacy strategy of AREA it is important to review the 
situation-oriented awareness framework presented so far. AREA restricts 
awareness about the actions performed on a particular artifact to the set of 
awareness situations available for the artifact's class in the static application 
model. At runtime such a situation applies if an actor accesses one of the artifacts 
constituting the situation. In a reasonable implementation, situations will most 
often comply with the formal organization of work in terms of access and group 
collaboration. 

As an example, consider an application such as a shared drawing tool in which 
documents can be organized in projects, a useful user model could specify 
notifications about changes of drawings when the user is active in a project 
containing the drawing. The situation "when active in a project containing the 
drawing" implies that the user needs to have access to the project in order to see 
what happens with the drawing contained therein and is thus compliant with the 
work organization. 

However, AREA also allows the definition of situations that aren't compliant 



72 

. ] 

to the information access restrictions in the work setting. As an example consider 
a document management application Here it could be useful to have a 
RelatedDocument situation- when accessing a particular document this situation 
notifies about events of other documents sharing some properties in terms of 
content. These documents would not necessarily have to be located in the same 
place. In fact, they could exist completely outside of the document space 
accessible to the user , 

Thus a reasonable strategy to enforce privacy in AREA can be obtained by 
restricting the set of users that may receive events for a given situation Since it is 
very common that users are willing to expose their activities to others, if they 
have access to the corresponding work artifacts, this strategy requires users only 
to deal with notification situations that cross the border of shared access. 

Formally, a privacy specification in AREA looks similar to an interest 
description: It consists of an event description, a scope, and a situation, with each 
of these components having analogous meaning. The event description defines for 
which actions a user wants to define privacy, the scope defines the artifact space 
on which the specification applies, and the situation-relation denotes the 
particular awareness situation that shall be restricted for other actors Instead of 
an intensity value, the fourth component of privacy specifications defines an 
admission list of actors, listing those that are granted the right to receive the 
specified event. 

The event notification accounts for privacy specifications in the following 
way: For each new event AREA determines the set of privacy descriptions 
defined for the responsible actor in the scope of the origin. Formally, this is 
similar to the first step in the evaluation of the interest profiles. For each 
composition artifact there is now a list of matching interest descriptions as well as 
a list of matching privacy descriptions. These privacy descriptions can then be 
grouped according to the situation they apply to. If no privacy descriptions exist 
for a particular situation, all actors receive the event notification according to 
their interest specification. If a privacy description does exist for a particular 
situation, only those actors listed on the admission list can receive notifications. 

Global User Models 

AREA does not directly include groups as components of the awareness 
framework. Nevertheless, the model does support a group-oriented notion of 
awareness: A set of global user models can be used to enforce the existence of 
interest and privacy specifications for individual actors. Formally, global user 
models have the same characteristics as the standard models, except that they 
apply for each actor in the environment. 

Using global user models an application can enforce the visibility of events for 
each actor and hence create a common reference for those actions. In contrast, 



73 

global privacy descriptions make sure that nobody in the system can receive 
notifications about the specified events in the corresponding situation. In this 
way, legal and organization-wide regulations in terms of privacy can be enforced. 
Note that global user profiles cannot be used to.prevent an actor from enhancing 
his privacy. 

How does this help to establish group policies? The key to achieve this is to 
make use of the flexible scoping of the global user models Coordination of group 
activities in collaborative environments always involves managing common 
artifacts By defining global user models scoped to these shared artifacts it is 
possible to establish group policies for awareness notifications. 

AREA as an Awareness Infrastructure 

So far, AREA is described as a formal framework for asynchronously managing 
event notifications in a collaborative object space The framework uses a semantic 
model of the application to allow event notifications in application-relevant work 
situations. While many aspects of the application model can be defined statically, 
others require close collaboration of the application and AREA at runtime. The 
following sections concentrate on the role of AREA as a groupware infrastructure 
component. 

AREA 

PI ft 
O i l JJJ C £ J 

:.i~its,< Script 
interpreter 

AREA server 
library 

Access application data 

Figure 7 Architecture alternatives for clients using AREA 

Figure 7 shows various options for client-server communication using AREA. 
On the client side there are two alternatives to access the service: using a client 
library or using a HTTP/CGI interface. Only clients using the library are capable 
of receiving event notifications. Obviously, this is only possible for newly 
developed applications, where the source code is available, or in applications 
capable of extending their functionality using dynamic link libraries. Besides 
creating events and receiving event notifications, the client library provides 
access to the details of the static application model and the user models as well as 
a query interface to the event database. This information needs to be accessed by 



74 

the client in order to interpret event notifications triggered by the server. 
Clients using the HTTP interface can only create events. Although restricted in 

functionality this interface offers a perspective to add a range of standard 
applications as clients of AREA. A prerequisite for using this alternative is the 
availability of a scripting component, or a macro processor capable of issuing 
HTTP requests. However, many office productivity tools include such an 
interface. In this way, AREA can support awareness about activities, such as 
reading email or working with a word processor. 

On the server side AREA provides two alternatives for defining the static 
application model: using a script interpreter and using a server-side library The 
server side library contains stubs, which can be used to generate portions of the 
static application model. A common use of the library is to access the server 
component of groupware applications or general infrastructure services such as a 
directory service. In this way, portions of the application model can be generated. 

In addition to the server-library, the application model can also be described in 
a scripting language. The language' is particularly useful to define class-level 
attributes, e.g. event life'cycle and persistency properties as well as user-friendly 
naming for the model components. The dual approach of scripting and using a 
library offers additional flexibility to define the dynamic portions of the model 
components' the scripting language offers a construct to call function stubs that 
are defined using the library, thus providing means to extend the functionality of 
the scripting component. Since the evaluation of relations and the computation of 
event attributes are performed on the server side, accessing client side 
functionality plays a critical role in the event distribution. 

User Interface issues 

AREA abstracts from the actual application's semantics Consequently, the 
system doesn't make assumptions concerning the user interface. A notification in 
AREA means the application receives a description of the new event and the 
corresponding intensity value. It is completely in the application's responsibility 
how to display the event at the user interface An application may choose among 
a variety of different user interface techniques, e g. sound, symbol animations, 
color annotations, or standard techniques such as dialog boxes, whichever 
technique fits the application's user interface metaphor and meaning of the 
intensity. 

Cross-Application Awareness 

AREA is a cross-application awareness service. To a user working in application 
A the system can provide notifications about activities of another user working in 
a distinct application B. Obviously, this requires the notifying application to be 
capable of interpreting events in the domain of B. This requirement is addressed 
in AREA by giving clients access to the complete static application model The 



75 

class hierarchies for events and artifacts contain user-friendly naming support, 
such that an application can display meaningful event information about any 
event 

An Example Application 

The following sections descnbe PoliAwaC, an application of AREA in a 
document management groupware application The application has been 
implemented in the POLITeam3 project developing groupware technology for a 
German federal ministry distributed between Bonn and the new German capital, 
Berlin (see e g Pnnz et al., 1998). 

POLIAwaC extends an existing document management system (Digital's 
LinkWorks) with an Interface . providing synchronous and asynchronous 
awareness. The system uses AREA for the management and notification of events 
generated by the core document management server and office tools used to 
manipulate the documents. The following description concentrates on the 
application model of POLIAwaC in AREA and discusses the resulting support for 
awareness in terms of the available notification situations. The details of the 
system and the user interface mechanisms are described by Sohlenkamp (1998) 
and Mark et al. (1997) 

The application model 

The following figure provides an overview of the static application model of 
POLIAwaC as it is defined in AREA: 

Figure 8 The class hierarchies for artifacts and events in POLIAwaC 

POLIAwaC = POLITeam Awareness Client 



76 

The left side of Figure 8 shows the artifact class hierarchy Since POLIAwaC 
is a document-sharing environment for an administration, the most important 
artifacts are the different types of text documents. The other classes represent the 
tools and shared container that are available in POLIAwaC The class CircFolder 
denotes a special folder offering some basic document routing capabilities 

The right side of Figure 8 illustrates the event class hierarchy POLIAwaC 
defines three classes of activity events. Opening and closing folders and editing 
and reading documents. All other events are modification events, i.e events 
describing discrete state changes. The abbreviations behind class names 
correspond to some of the artifact classes on the left If present, they indicate that 
an instance of this event' class can only be created by artifacts of the 
corresponding artifact class. Otherwise, any artifact can use the event class. 

The following table lists some of the relations defined in POLIAwaC: 

Relation If available for an artifact it yields Is defined for Relation groups 

Identity the same artifact ^ all arufacts Component, Composition, Situation 

Immediately N/A (symbolic relation) all artifacts Situation 

Containedln all superior folders , \ all aru facts Composition, Situation 

Contains the content artifacts ; ' ' ' , folder Component 

SameProcess all artifacts with the same reference 
number 

all documents Situation 

Workflow all documents belonging to the 
same workflow 

all documents Situation 

Table 2 Some example relations in POLIAwaC 
t 

The table lists the most commonly used relations in POLIAwaC. Similar to the 
example in Table 1 the system defines a Containedln-relauon, which can be used 
for indirect interest descriptions. Among the situations, SameProcess yields all 
artifacts with the same reference number4. The SameWorkflow situation covers all 
documents in a circulation folder. 

The application model allows users to create very specific (e g "notify all 
ChangeDoc-events of text 'report99' immediately with high intensity") or very 
general interest descriptions (e.g.! "notify all activity events of objects when I am 
active in the corresponding workspace with low intensity"). POLIAwaC enhances 
the usability of the model by allowing users to share the functionality of 
predefined interest descriptions and by using a wizard interface to define new 
ones. Also, POLIAwaC applies several simplifications in the model to ease the 
definition process, e g the predicates in the scope specification are simplified to 
match only single artifact classes or instances. 

The facilities for defining privacy have been hidden completely from the user. 

Reference numbers are used throughout the application in order to assign documents to a particular process 



77 

For each artifact, event notifications are restricted to those users having access to 
the artifact. Technically, this is achieved by automatically defining privacy 
descriptions for those situation relations that are not compliant to theformal work 
organization. This applies only'to two relations: Immediately and SameProcess.5 

This strategy emphasizes the need-to-know principle for the dissemination of 
awareness information while at the same time reducing the cognitive complexity 
of interest specifications It also guarantees that the privacy of awareness 
information is compliant with the degree of information sharing, i.e. private 
spaces are also private in terms of awareness information. 

Notification mechanisms 

Figure 9 shows the application's main window. The client uses the standard 
desktop metaphor. The document hierarchy and the contents of opened containers 
are displayed in different windows. Users have the possibility to define different 
views on objects regarding sorting criteria and iconic or textual display, thus 
allowing for individual working styles. 

Folder hierarchy 
in the workspace 

53 In the workspace 

Figure 9' The main application window of POLIAwaC 

The notification techniques employed in POLIAwaC depend on the class of 
event and the event intensity Four different intensity levels are defined in 
POLIawaC with the respective UI techniques being more disruptive as the 
intensity increases. 

In the lowest intensity, events are displayed using symbol embellishments for 
activity events and color overlays for change events. In the next higher intensity 
level, POLIAwaC uses icon enlargements, which are particularly useful to signal 

Artifacts can belong to the same process without being accessible in a common folder or workspace 



78 

past and ongoing activities in the folder hierarchy shown in the tree view on the 
left side of the main application window. Events in the third intensity level are 
displayed as a message in an event ticker at the bottom of the main window. The 
ticker widget can be used to browse through the list of recent events. Events with 
the highest intensity value are displayed in a modal dialogue box, which has to be 
acknowledged by the user. Thus the low intensity levels cause events to be 
perceivable using peripheral vision while the higher levels force users to focus on 
the information presentation explicitly. 

i i !• 

Conclusions , 

The experience with POLIAwaC has shown that AREA provides a very powerful 
tool for adding awareness support to a groupware environment. Unlike alternative 
notification services such as NSTP, AREA requires an extensive model of the 
application domain to be supplied. The POLIAwaC example has shown that with 
a relatively lean domain model the usefulness of awareness notifications can be 
enhanced substantially. Nevertheless, the creation of this model is a significant 
overhead in using the service. The following benefits justify these additional 
costs' . 

First, having an integrated domain model is a prerequisite for. cross-application 
notification. Applications can only exchange and present events that are occurring 
in another application in a meaningful way, if they have access to a semantic 
model of the events. ' 

Second, the application model offers a homogeneous interface to specify work-
oriented support for awareness. Events can be notified according to individual and 
group interest profiles such that notifications occur at the right time, i.e. 
synchronously, if the user happens to be in the right situation at the time the event 
occurs, or asynchronously, as soon as the user enters the appropriate notification 
situation. 

Third, the availability of the application model frees client applications from 
having to deal with the complexity of notifying events in the appropriate situation 
and enforcing privacy constraints.,By maintaining a unified application model 
AREA provides a single interface to the applications as well as to the user for the 
delegation of this complexity. 

Privacy is considered as an integral requirement for providing awareness in a 
groupware setting. The notification service takes a 0-1 approach to deal with 
conflicts resulting from incompatible privacy and interest specifications in the 
user models. Event notifications only take place, if there is no conflicting privacy 
profile. This strategy is clear and simple and guarantees that organizational and 
legal restrictions as well as local group policies can be applied. However, this 
approach may not be flexible enough for some applications in which a continuous 
degradation of the awareness notification is desired in response to enhanced 



79 

pnvacy demands. 
As an application independent groupware service AREA requires the 

application to supply the user model AREA only provides an interface for 
specifying interest and privacy. In the POLIAwaC example a dual approach was 
taken: the client provides a dedicated user interface to specify interest profiles but 
privacy profiles are defined automatically, hidden from the user. In general, using 
AREA requires deciding who is responsible for setting the awareness parameters. 
The expenence with POLIAwaC indicates that it may be desirable to provide 
more support on the side of the service for this. For example, it could be helpful 
to have an independent tool to define general group- and work-oriented awareness 
strategies For example, instead of the need-to-know strategy for privacy taken by 
POLIAwaC it might be desirable to realize a reciprocity-based privacy strategy. 
Identifying suitable strategies for pnvacy and interest and making them available 
in AREA requires further research. 

What are the technical limitations of the AREA awareness model? The system 
is restricted to notify discrete events rather than provide awareness using 
continuous media streams. Also, the event distribution mechanism can be 
computationally demanding, depending on the underlying application model The 
biggest impact results from the evaluation of relations As a consequence, AREA 
is not suited to disseminate synchronous, time critical events typically found in 
synchronous 3D environments. However, situation oriented event notification has 
the potential of being a useful strategy for synchronous application sharing (e.g 
to support relaxed WYSIWIS). Determining the borderline of applicability for 
synchronous shared applications remains to be investigated. 

Acknowledgements 

The research described in this paper has been performed when I was working at 
the German National Research Institute for Information Technology (GMD-FIT). 
I want to thank all the members of the POLITeam project for their great support 
Also I want to thank Steve Poltrock at Boeing and the reviewers of the 
ECSCW '99 program committee for their comments. 

References 

Chabert, A, Grossman, E , Jackson, L, Pietrowicz, S , and Seguin, C (1998) "Java Object-
Sharing in Habanero", Communications of the ACM, Vol 41, No 6, pp 69-76. 

Fuchs, L , Pankoke-Babatz, U , and Pnnz, W (1995) "Supporting Cooperative Awareness with 
Local Event Mechanisms The GroupDesk System", in Proceedings of the European 
Conference on Computer Supported Cooperative Work (ECSCW95), Stockholm, pp 247-
262 



80 

Gutwin, C , Roseman, M., and Greenberg, S. (1996): "A Usability Study of Awareness Widgets in 
a Shared Workspace Groupware System", in Proceedings of the Conference of Computer 
Supported Cooperative Work (CSCWV6), Boston, MA, ACM Press, pp 259-267 

Heath, C, and Luff, P (1992) "Collaboration and control crisis management and multimedia 
technology in London underground control rooms". Computer Supported Cooperative Work, 
Vol l,No 1-2 , ' | 

Mark, G , Fuchs, L., and Sohlenkamp, M (1997). "Supporting Groupware Conventions through 
Contextual Awareness",1 in Proceedings of the Fifth European Conference on Computer 
Supported Cooperative Work (ECSCW'97), Lancaster, UK, Kluwer Academic Publishers, 
pp. 253-268 

Nomura, T , Hayashi, K, Hazama, T., and Gudmundson, S. (1998) "Interlocus Workspace 
Configuration Mechanisms for Activity Awareness", in Proceedings of the International 
Conference on Computer Supported Cooperative Work (CSCW '98), Seattle, WA, ACM 
Press, pp 19-28 • 

Patterson, J F , Day, M, and Kucari, J (1996) "Notification Servers for Synchronous 
Groupware", in Proceedings of the Conference of Computer Supported Cooperative Work 
(CSCW'96), Boston, MA, ACM Press, pp 122-129 

Pnnz, W , Mark, G , and Pankoke-Babatz, U (1998) "Designing Groupware for Congruency in 
Use", in Proceedings of the International Conference on Computer Supported Cooperative 
Work (CSCW '98), Seattle, WA, ACM Press, pp. 373-382 

Rogers, Y. (1993)- "Coordinating Computer-Mediated Work", Computer Supported Cooperative 
Work, Vol. l,pp 295-315 ,' 

Roseman, M, and Greenberg, S (1992) "GroupKit A Groupware Toolkit for Building Real-
Time Conferencing Applications",' 'in Proceedings of the Conference on Computer 
Supported Cooperative Work (CSCW '92), Toronto, Canada, ACM Press, pp 43-50 

Sandor, O , Bogdan, C, and Bowers, J (1997) "Aether An Awareness Engine for CSCW", in 
Proceedings of the Fifth European Conference on Computer Supported Cooperative Work 
(ECSCW'97), Lancaster, UK, Kluwer Academic Publishers, pp. 221-236 

Shim, H S , Hall, R W, Prakash^ A., and Jahanian, F (1997)- "Providing Flexible Services for 
Managing Shared State in Collaborative Systems", in Proceedings of the Fifth European 
Conference on Computer Supported Cooperative Work (ECSCW'97), Lancaster, UK, 
Kluwer Academic Publishers, pp. 237-252 

Smith, G , and CBnan, J (1998) "Re-Coupling Tailored User Interfaces", in Proceedings of the 
International Conference on Computer Supported Cooperative Work (CSCW '98), Seattle, 
WA, ACM Press, pp. 237-246 ' 

Sohlenkamp, M (1998) Supporting Group Awareness in Multi-User Environments through 
Perceptualization, dissertation thesis, University Paderbom, Institute of Computer Science, 
Paderborn, Germany Also available at http //orgwis gmd de/projects/POLITeam/pohawac-
/ms-diss 


