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This paper presents an infrastructure to support the dynamic sharing of information 
across a range of cooperative environments The infrastructure builds upon the use of 
shared common spaces by using a distributed tuple space to provide information sharing 
at its base level The platform extends existing considerations of tuple spaces' by adding 
mechanisms to provide active support for sharing data elements. The- use of a tuple 
space moves away from previous models of distribution in cooperative systems that 
focus on the propagation of events to focus on active data sharing The use of data 
tuples allows the sharing of information to be independent of the information model 
allowing a wide range of applications and environments to be supported. The paper 
presents the infrastructure and shows how it can be used to support information sharing 
across a number of different forms of cooperative (System and application. 

1. Introduction 
The CSCW research community has seen the development of a variety of systems 
that support real time cooperation through some sense of shared interaction. 
Initial systems focused on.the development of shared interface techniques such as 
WYSWIS (Foster, 1986), interface coupling (Dewan, 1991) and the tailoring 
mechanisms (Greenberg, 1991). Underpinning the development of these interface 
techniques was a growing acceptance of a common model of shared interaction. 
The general strategy agreed was to consider multi user interfaces in terms of 
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different views on a shared data model (Bentley, 1992; Dewan, 1991; Hill, 1993; 
Lee, 1996; Mansfield, 1997). This separation allowed the interaction to be shared 
by sharing the underlying model while allowing its effects to be presented in a 
variety of different ways. •' ' ' 

In addition to these technical developments, a number of researchers began to 
consider the development of "Common Information Spaces" (Bannon, 1997) and 
suggest that one way to support cooperation was to consider the cooperation in 
terms of users interaction with a pool of shared information. It is clear that both 
technical and conceptual agreement on the development of applications to support 
cooperative interaction have started to emerge. The core of this agreement is an 
exploitation of the concept of some form of shared space that provides a focus for 
interaction. These shared spaces allow resources associated with the cooperative 
interaction to be gathered together and presented to a community of users. These 
spaces all provide a number of features to promote shared interaction. 

• Information and resources can be shared between users by placing them in 
shared spaces with the effects of interaction propagated to other users. 

• Users have an awareness of others in these shared spaces as user actions are 
reflected through their effects on shared resources in the space. 

• Some agreed model is used to manage and structure access to the shared 
information iri the space. Essentially, two main models are used to manage 
interaction. ' ' 

Space based models where the space is partitioned to manage the 
interaction. (For example, room based systems (Roseman, 1996)) 
Time based session models where the access to the space is managed 
by providing a series of different sessions (Edwards, 1994) 

The majority of these information spaces agree on the need to allow resources 
and information to be shared, the provision of techniques to structure this sharing 
and the need to allow users to be aware of the activities of others. However, 
despite this broad agreement the majority of systems do not provide any 
mechanism for interaction with other cooperative systems. In essence, each of 
these cooperative systems each still behaves as closed environments with limited 
access to other forms of cooperative systems. 

In this paper we present the development of a platform to support sharing 
across a heterogeneous collection of applications. The platform allows interaction 
to be shared between cooperative applications by providing support for the active 
sharing of information^ This allows cooperative applications exploiting a pool of 
common shared information to extend this model beyond their traditional 
application boundaries. ' ' ' 

Within the Platfrom for Shared Interaction (PSI) sharing is provided through 
an active sharing infrastructure that combines a simple data model with active 
sharing mechanisms. The platform is realised as an active layer on top of an 
extended tuple space that allows information tuples to be shared across a number 
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of distributed applications. The development of the platform required both the 
construction of the platform itself and the augment of an existing tuple space with 
notification mechanisms to make it an active tuple space. The representation of 
information as tuples in the active tuple space allows us to support a number of 
different forms of presentation and interaction of the shared information. 

In the remainder of this paper we present an overview of the need to provide 
support for active sharing that moves beyond existing event based awareness 
models. We outline an overall architecture for the platform and then consider the 
development of the platform itself. The developed platform combines extensions 
to the existing model of tuple spaces to make them active and the development of 
a set of services to provide access to this tuple space. We outline and describe 
these extensions before considering how the platform is used in practices and how 
it may be used by existing applications. 

2. The Development of Supporting Services 
One reason for the lack of cooperation across cooperative systems is that a 

mismatch exists between the need for sharing within these systems and the 
provision of supporting infrastructures. The current generation of infrastructures 
provided to cooperative applications are motivated by the need to support 
awareness and focuses on the propagation of user actions. While the notion of 
awareness is important we feel that this focus has led to an imbalance in the 
provision of supporting services and we need to consider the development of 
active sharing services that allow interaction with different forms of 
heterogeneous information to be shared between cooperative systems. 
The majority of supporting services and protocols have tended to focus on the 
propagation of awareness information in the form of events. This has included the 
development of protocols to augment the World Wide Web (Palfreyrhan, 1996) 
and a number of general event and awareness protocols. Although they focus on 
propagation of awareness some of these protocols already incorporate some 
model of sharing and information spaces. For example, the Corona 
communication service incorporates a model of shared spaces-(Hall,. 1996). The 
use of a shared information space is also mirrored in the development of the 
NSTP protocol that uses "places" and "things" (Patterson, 1996). 

The use of places and the move to state based services is also manifest at in 
applications in the way in which the shared interaction is managed. As we have 
said previously, two models for managing shared interaction have emerged. 

1) Event based supporting services have tended to be based on the notion of 
application sessions as an abstraction to represent the set of destinations 
to which application events are delivered. 

2) State based applications have seen the introduction of space based or 
room based approaches for managing shared interaction where updates 
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are clustered around a set of collected resources. 
We wish to develop a shared interaction platform that exploits the active 

sharing of state. This allows us to marry both these approaches and our platform 
provides mechanisms to support both paradigms. Additionally the focus on state 
as a means of conveying interaction allows us to provide a bridge between real 
time and more asynchronous forms of interaction 

Existing systems also offer some form of structuring model to manage shared 
interaction. Often these models exploit some concept of space or a spatial model. 
For example, the supporting services in Teamwave are articulated in terms of 
rooms (Roseman 1996), while Corona offers shared spaces (Hall, 1996) and 
ORBIT offers locales (Mansfield, 1997). Similarly, Collaborative Virtual 
Environments (CVEs) such as DIVE (Carlsson, 1993) and Massive (Greenhalgh, 
1995) exploit 3D models of spatial arrangements as a means of structuring the 
shared information space. 

In developing our supporting platform we wish to recognise the need for 
providing some form of structure and the need to provide support that allows a 
diverse set of structuring models to coexist. It is important that we do not impose 
an external structure but that we recognise the situated nature of these cooperative 
applications and the emergent properties of the structure used to manage 
interaction in shared information spaces. Thus rather than develop another model 
of shared information spaces and support for this model we wish to provide 
support to bring these different spaces together. 

In order to allow a range of models to coexist we focus on the provision of 
very lightweight data model for shared state that allows users to make information 
available to others and to allow linkages between different forms of shared state. 
The service we have developed provides a number of key features 

• A lightweight data model that allows support for a number of different 
forms of shared space ; 

• Extensible support for sharing allowing the addition of different persistence 
mechanisms. '' 

• Support for a wide variety of forms of data by providing a clear canonical 
representation of information , , 

• Support for flexible forms of sharing with varied patterns of use. 
In order to provide these features we have chosen to move away from more 

traditional communication based model of distribution This move reflects a 
response to the emerging demands . cooperative applications place on the 
supporting infrastructure. However, as we build upon these alternative 
distribution techniques we in turn place new requirements upon them requiring 
changes to these underlying platforms. In the following section we show how we 
formed an overall architecture by building a supporting platform on top of an 
amended tuple based distribution platform. 
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3. The PSI Architecture 
The PSI architecture provides an active distributed real-time sharing platform. 
The central approach is the cooperative, sharing of arbitrary data among a 
heterogeneous set of distributed applications. The platform allows cooperative 
applications to make application information externally available by sharing it 
with the environment. The arrangement of the platform is shown in figure 1: 

Platform for Shared Interaction 

Figure 1: The general view of the Platform for Shared Interaction 

To share information an application makes it available to the platform through 
a simple sharing adapter that provides a mapping between internal representations 
and the facilities provided by the PSI sharing mechanisms. Once internal 
application data has been made available to the platform its state information is 
held as a set of shared data tuples with updates and alterations to these tuples 
propagated to all applications sharing this information. Other applications can 
access this state information through local proxies that reconstruct the 
information. The platform manages alterations to the state by propagating updates 
through the tuples in the active tuple space. 

The platform provides flexible sharing by extending current work on tuple 
spaces to provide an active tuple infrastructure. Traditionally tuple spaces have 
provided distributed access to simple data tuples and managed the issues of 
distribution to ensure that changes to these tuples are made available across a 
community of users. |The platform for shared interaction extends these facilities 
to provide a set of cooperative shared interaction services by augmenting the 
existing tuple model in two ways. 

• Extending the existing passive state based model of sharing to provide 
active support for sharing where applications are informed of alterations to 
shared tuples. 

• Providing a simple and lightweight data model and API that supports the 
structuring information between cooperative applications. 
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What makes the PSI approach novel and advantageous over previous 
approaches is that the shared information space metaphor is being supported at 
the underlying distributed system level in a completely semantic-less manner. 
This is important for several reasons: First, it enables the programmer to reflect 
changes in the applications model of cooperation within the underlying 
communications structure of the distributed system (Bentley, 1995). Secondly, by 
moving the data sharing into the distributed system, the natural boundaries of 
sharing between applications can be transcended, allowing the data to be accessed 
and shared across applications, operating system and network. 

In the following section we consider both the extensions to the underlying 
tuple space and the development an application interface that exploits this 
extended tuple space platform. The tuple space platform provides the advantage 
of offering a simple state representation that can be used to model a range of 
structures. In the following section we consider the extensions we made to the 
tuple space paradigm to allow the development of more active shared spaces. This 
is then build upon to provide the shared platform application interface. 

4. Extending Tuple Spaces 
A tuple space is a well known distributed systems mechanism originating from 
the work on the Linda project (Gelernter, 1985). Tuple spaces have their roots in 
the development of parallel processing applications and are traditionally used for 
(and best suited to) supporting systems that have well identified producer-
consumer flows of data - where one part of the system is responsible for 
providing data that another part processes. 

A tuple space contains zero or.more tuples, as well as references to other tuple 
spaces. Each tuple consists of an ordered list of typed fields. For example, a tuple 
that would hold a name-value,pair would be (<String>, <Data>), where <> 
identifies the type of the field: " Note that fields are not named, making the 
ordering of the fields within a tuple important. Each field within a tuple is also 
said to be an "actual" or a "formal". An "actual" field is one that contains real 
data, whereas a "formal" field.is a placeholder used in matching (see below). 
Traditional tuple spaces supportthree key operations, shown in Table I. 
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Op Params Description  
RD Tuple Read any tuple from the tuple space that matches certain fields in the query 

tuple There is no guarantee as to which tuple will be consumed if more than 
one would match the query tuple Matching is performed by checking the 
"actual" fields have the same types and values as the tuple in the space 
Once all the fields have been matched, the remaining (if any) formal fields in 
the tuple are filled with the matching tuple's corresponding values  

IN Tuple This operation is similar to RD but removes the matched tuple from the 
space Again there is no guarantee as to which tuple will be consumed if 
more than one would match the query tuple  

OUT Tuple Write the tuple from this application out to the tuple space Once the tuple 
has been written it becomes available to all applications connected to the 
space All the fields in a tuple being OUTed must be "actuals",  

Table I Standard tuple space operations 

The PSI exploits and extends a distributed tuple space called L2imbo that is 
described in detail elsewhere (Davies, 1997). The design and implementation of 
L2imbo is such that it is more suited than other systems for use in distributed and 
mobile applications; it makes extensive use of IP multicast and supports 
interaction across a range of heterogeneous platforms (Davies, 1998). These 
characteristics differ from previous systems, which generally had more of a focus 
on performance for parallel processing within homogeneous networks and 
dedicated parallel processing environments. L2imbo is also fully distributed, 
rather than being based on a client-server architecture. The system uses 
application-level framing techniques from the Scalable Reliable Multicast 
protocol, as used in a number of the MBone tools, and models each distributed 
tuple space as a multicast group. 

The use of the L2imbo tuple space provides us with two distinct advantages in 
terms of an infrastructure for real-time cooperative applications. 

l. The mechanism is based on fast access to decentralised shared state 
and the infrastructure is optimised to support this arrangement. 
Applications sharing data with the space do not have to worry about 
how changes to their shared state are propagated to other applications, 

ii. The use of tuples as a representation of information does not impose a 
particular data model and applications can externalise diverse forms of 
structured information across heterogeneous applications. 

The L2imbo tuple space is a passive entity which ensures that state information 
is available to all those who access the platform. It is the . applications 
responsibility to continually monitor for changes to a given fixed set of tuples and 
act upon the changes to these tuples. This is done by making the RD operation 
blocking so that the execution of the application making the RD call stops until a 
tuple successfully matches the RD 

4.1 Augmenting distributed tuple spaces for CSCW 

Although the tuple space, metaphor inherently supports the notion of a shared 
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space the traditional view of a tuple space is limited to a fixed producer-consumer 
model of information flow This model is problematic because the consumers are 
expecting the information to be produced. No facilities are provided for actively 
notifying applications of events occurring in a tuple space (such as a new tuple 
arriving) and only very limited facilities are available for querying, rather than 
consuming or extracting, the current contents of the tuple space. 

To allow the more dynamic arrangements involved in cooperative settings we 
have extended the existing view of tuple spaces by augmenting the L2imbo tuple 
space with an awareness facility offering additional operations that extend the 
standard set of tuple operations. These are summarised in Table II. 

Operation Pa rams Description 
Register Callback Register a callback in the application executed whenever a particular 

OUT/IN type (or subtypes) of tuple is added/arnves (OUTed), or 
type removed/deleted (INed) from the tuple space. The callback receives 

the identifier of the tuple space where the operation occurred and a 
copy of the actual tuple the operaUon occurred on 

Unregister reg-id Remove previously registered callback 

Table II Extended tuple space access operations 

The core of this extension is a simple registration based notification facility 
that allows applications to register an interest in particular tuples and be informed 
via a callback mechanism when a tuple matching the given pattern is added or 
removed from the tuple space. The development of this callback mechanism 
means that applications reading the tuple space need no longer block and are free 
to handle other events while waiting for particular changes to the tuple space. 
Other useful facilities in this particular tuple space implementation include collect 
I copy_collect, which in I rd all matching tuples into a new tuple space. There are 
also non-blocking versions of mand rd, named inp and rdp. 

These extensions assist in transforming the traditional tuple space to make it an 
active distributed shared space. The.platform is realised on top of this active tuple 
space and provides an interface that can be used by a range of applications. The 
following section provides an overview of the application interface. 

5. The PSI application interface 
The platform for shared interaction (PSI) basically views applications as isolated 
"data spaces" populated with local data in their particular information model. 
These applications may choose to share some or all of this data so that other 
applications may access this information. The platform provides support for 
applications to insert and extract information from the platform and allows 
applications to interact with this shared information. The PSI architecture is 
divided into three separate layers, as shown in Figure 2. 
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Figure 2 Architecture of the Platform for Shared Interaction 

The core features of the architecture can be best described in four separate 
pieces. The application layer contains the applications themselves (or adapters for 
legacy applications). The application contains application specific objects that 
are native to that application. The application decides which of these objects are 
exported to the shared information space. The application communicates with the 
platform through the PSI API. 

The PSI API maintains and decomposes the application specific data into 
shared proxy tuples'. These are objects that reflect the contents of tuples in the 
underlying tuple space. They change as their tuple-space counterparts change and 
visa-versa. 

The PSI connector provides the main coordination point for applications and 
the API, facilitating access to information in the shared spaces. This includes 
tasks such as adding and removing shared state from the tuple space and 
monitoring the tuple space for changes. 

The tuple space daemon provides access to the tuple space and allows 
applications (such as the PSI connector) to add, query and remove data from the 
tuple space, as well as maintaining the same tuple spaces in a replicated fashion 
across any number of machines. 

5.1 The PSI API 

The API for the platform provides a simple common interface to allow 
applications to share and.manipulate data through the tuple space. The API is 
currently realised in Java to provide as much cross-platform support and 
integration as possible. The API defines two types of tuple that are exported into 
the shared tuple space and carry application data: data tuples and relation tuples. 
These tuples are realised locally as proxies with corresponding tuples created in 
the shared tuple space. 

In the following sections we consider the structure of the data tuples and 
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relation tuples that provide the application interface for the platform. A dedicated 
connector object that manages the connection between the proxy tuples and the 
tuples in the underlying tuple space supports these two tuples. 

Data tuples 

The Data tuple represents a single atomic piece of shared data. A Data tuple 
consists of the fields shown in Table III. 

Field Type Description 
Tuple ID String Some unique identifier that identifies this particular tuple in the tuple 

space It contains a tuple sequence identifier 
Application String Identifier of the application sharing the ob]ect (typically its mime-type) 
Session ID String Some unique identifier for this session 
Object ID String Some unique identifier for the shared object to which this data belongs 
Data Name String The name of the data value 
Data Type String The type of the data value 
Data Value Data The data itself 

Table III Fields in a Data tuple 

To extract tuples relevant to a particular application from the shared space, it 
must be possible to identify distinct pieces of application shared data Aside from 
the TuplelD field which is used for state update (see later), an application may 
uniquely identify a particular piece of data using the following quad: 

.{Application, SessionID, Object ID, Data name} 

The uniqueness or scope, of each identifying field in the quad is the 
responsibility of the previous field. Thus each application with a given application 
identifier is responsible for maintaining and allocating the different Session-ID's 
in that application. Each session allocates the Object-ID's for objects in that 
session and so on. ; 

The platform is policy free with the Application field and the Session-ID field 
being given equal weighting. This means that the platform supports a number of 
alternative arrangements allowing both session-based and space-based views of 
the data, even simultaneously. If an application were to query the tuple space 
using a specified Application class (resource), then it would be possible to present 
to the user a view of current application sessions and the data associated with 
them. In contrast, the Session-ID can be associated with a particular space (for 
example a room in Teamrooms(Roseman, 1996) or a region of a CVE 
(Greenhaulgh, 1995) and if the tuple space is queried using a specified Session-ID 
it would present a view of all of the applications available in that particular space. 

Consider a particular collaborative application based on the rooms metaphor 
which needs to obtain all of the data for all of the resources (chat, whiteboards, 
shared documents, reference to audio channel, etc) in a given room, then it 
simply queries the space using the session identifier for the required room 
Alternatively, if a particular type of resource (application) is being used in many 
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different sessions, then querying with the application class will produce a list of 
the session identifiers all of the instances where it is used. 

< "5432#12", "x-worid/x-vrml", "viewer 3", "box 67", "scale", "vec3f", 1001. Will > 
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Figure 3 Composition of an example Data tuple 

The value for the Application field of a data tuple is specific for each class of 
application and would normally be compiled into the application code (or its 
external interface). For any given application class, there are a number of Object-
ID (and their nested arbitrary Data-name) values reserved for management 
functions. This enables an application to display standard properties for each 
item in a list of sessions or resources. 

Once data is made available in the tuple space, it can be retrieved using the 
normal tuple space operations. By combining different actual and'formal values 
in a data tuple, applications can execute template queries for different data. Some 
useful combinations are shown in Figure 3, above. For example, by providing an 
application class of "x-world/x-vrml" and leaving all other fields as formals in a 
data tuple, the application can obtain a list of all Session-ID''s for that type of 
application in the shared space. 

Relation tuples 
Arbitrary M-N relations can also be shared within the platform by using multiple 
1-1 relationship tuples, whose definition is shown in Table IV. 

Field Type Description 
Application String Identifier of the application defining this relationship (typically its 

mime-type) 
Session ID String Some unique identifier for this session 
Object ID String Unique identifier for the shared object which this relationship 

concerns 
Relation String Name of the relationship to which this 1-1 mapping belongs 
Left String The LHS of the relationship 
Right String The RHS of the relationship 

Table IV Fields in a Relation tuple 

This allows us to reflect and share the core connections central to the 
information models and data structures used internally by cooperative 
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applications by making the relations linking information objects externally 
available through the shared interface platform. Particular instances of given 
relations are therefore defined by the quad: 

{Application, Session ID, Object ID, Relation} 
An entire M-N relationship is broken down by the API into 'M x N' 1-1 tuples, 

to allow queries to be executed, on the platform over the shared relationships. To 
extract an entire shared relationship, the API need only perform a single "collect" 
operation on the tuple space with a complete quad. 

< "x-worid/xvrml", "vewer_3", "scene_root", "chfld", "scene_root", "wall_3" > 
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V. ^ 
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Also identifies a singe type of relation for an application 

Figure 4 Composition of an example Relation tuple 

Relation tuples can be used to store hierarchy, such as those used in 
information and organisation models. Equally they can be used to share the 
hierarchy in 3D geometry. In this case the geometry would typically be broken 
into several smaller simple parts and grouping nodes used to tie them together. 
To share this state across the space we need data tuples for each part of the 
geometry and a data tuple for the group node. We then need to create a relation 
tuple to link the parent to each of its children. An example of this style 1-N use of 
relation tuples can be seen in Figure 4 above. 

The PSI Connector Object 

The Connector object provides the point of communication between the PSI API 
and the underlying tuple space daemon, manifesting changes to the local shared 
data proxies as the actual values are modified in the tuple space, and visa versa. 
The connector provides methods that can be invoked through the API to query 
and manipulate the shared spaces in the platform. 

The two methods shareData() and shareRelation() instruct the connector to 
share some application-defined data tuple or a MxN relationship with the space. 
If the shared space already contains a matching data tuple (i.e. it has the same 
unique quad fields) or set of lx'l relation tuples (for the MxN relationship) then 
the connector makes local proxies for these existing tuples and returns their 
values to the application. If no such data or relation exists then new tuples are put 
into the shared space and local proxies are created. These API methods provide a 
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very simple interface for an application to either share new data with the platform 
or to get existing shared values back. 

5.2 State update and propagation » - . . . - • . -

Propagation of state and notification of state changes between the underlying 
tuple space and the application is performed in two distinct way's depending on 
the nature of the update and the demands of the cooperative application. Consider 
a telepointer object whose position is shared in the tuple space. Another 
application is displaying the co-ordinates of the point in a simple text field. If the 
pointer moves quickly from point A to point B several hundred potential state 
changes may occur. However, the most important changes are the starting 
position of the pointer and the final resting position of the pointer. Those in the 
middle tend to be less important. In essence we categorise state updates to data 
tuples as either transient (if we miss an update it doesn't matter) or persistent 
(everyone sharing this state should see the same value). A data tuple can be 
updated using either mechanism at any time. Which update mechanism is used for 
a particular data tuple is left to the actual application(s) changing the data value 
(which can exploit semantic knowledge about what the data is to decide on the 
most appropriate method). 

Persistent updates . 
Because persistent events change the fundamental state of the data in the shared 
space, no explicit event tuple is created for these updates. Rather, the sender (the 
source) of the event (typically the local tuple proxy) IN's the state to be changed, 
modifies it, and then re-OUTs it back to the space. Two fields of the tuple are 
modified: the new state value containing the new data value and the tuple ID, 
which has its sequence component incremented. 

From the tuple space perspective one tuple has been removed and a new one 
added. Therefore these changes to the tuple space are then distributed to the other 
clients of the tuple space, where the daemon will trigger all the registered 
callbacks in the PSI connector for the newly OUTed tuple. The connector then 
extracts the new state from the tuple and updates the local proxy for the data in 
question. Any objects, such as the applications, which have registered callbacks 
on the shared proxy tuple are subsequently called. Note there are two levels of 
callback, first from the tuple space daemon to the proxies via the connector, and 
secondly from those proxies to any interested applications. 

Transient events 

Transient events are carried by special event tuples in an event tuple space. The 
format is shown in Table V. 
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Field Type Description 
Tuple ID String Identifies the data tuple containing the same Tuple ID to which 

this transient event applies. 

Event Sequence# Int Current sequence number for this transient update 
Data name String The name of the data value 
Data value Data The data itself 

Table V Fields in a Transient Event tuple 
i 

The tuple ID identifies the data tuple over which this transient update is 
occurring, while the event sequence number provides ordering between each 
transient event. This sequence number is maintained by each PSI connector, 
which updates its last known value whenever a new transient event is added to the 
event tuple space or arrives through a callback 

To generate a new transient event, the source of the event (typically the proxy 
of the shared data tuple) creates a new transient event tuple (incrementing the 
local sequence number and using the last known tuple ID of the state being 
changed) and adds it to the tuple space. This tuple is propagated by the 
underlying tuple space system' to all connected machines, which may issue 
callbacks to connected applications via the PSI connector. Each connector 
receiving this callback forwards the change in state (carried in the transient tuple) 
to the relevant PSI object and records the last event sequence number of the tuple. 

Transient events are never IN'ed by the platform API, only RD. Consequently 
no negotiation has to occur in the distributed system for the ownership of this 
tuple, which allows transient events to send information is very fast. However, 
because they are never IN'ed transient events are never explicitly removed from 
the tuple space by the platform API or applications. Therefore each transient 
event has an expires field to enable the tuple space to remove old events during 
garbage collection. , , 

Update Consistency 

Consistency between the persistent events and transient events on the same data 
tuple is guaranteed because of, the incremented tuple ID sequence value on the 
shared state whenever a persistent change is OUTed to the space. This means if 
the "tuple ID" of a transient event refers to a data tuple with a tuple ID which no 
longer exists, or whose sequence number is less than the last known one, these 
events can be safely discarded as they are "behind" some other part of the system 
(and are transient anyway). ' 

Consistency between the transient events themselves is fairly loose as the 
sequence ordering is only guaranteed on each machine rather than across the 
whole tuple space. This is because no IN's are ever needed for transient events 
and consequently no serialisation is ever performed at the tuple space level. The 
advantage of doing RD's rather than IN's is a vast improvement in performance 
(no checking of ownership exchange needs to occur across the distributed replicas 
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of the tuple space). Consequently, the sequence numbering of two contradicting 
"actions" in a distributed application could coincide since the sequence number is 
added by the local PSI connector. This could cause the object to get wildly 
different transient state updates in quick succession. However the first machine 
to commit a persistent value for the data tuple to the tuple space will "win" as it 
will change the actual tuple ID to which these transient events apply - and 
persistent updates are serialised because they rely on IN's. 

6. Using the platform 
To demonstrate some of the features and operation of the platform consider the 
following example where two applications (in these case two different CVE 
systems) are modified to allow them to export and share an object through the 
PSI. Note these applications do not have to be the same application (one could be 
VRML and one could be DIVE), nor do they need to be on the same machine but 
are connected through the distributed tuple space under the PSI. 

The first step in sharing the object between the applications is the construction 
of two shared adapters, one for each application. For the purpose of this example, 
the adapters share a common application class identifier within the PSI, "x-
application/x-shared-vr". 
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Figure 5 Exporting a VR object to the universe 

The second part of making the object commonly available and shared between 
the applications is to export the state of the object held by the application to a 
common shared space in the PSI. Figure 5 illustrates this process. First, the 
adapter requests the object data through the applications API (such as the EAI) 
(1,2). The adapter proceeds to create a local "data" proxy tuple to,contain this 
data (3), defining the various fields as appropriate - the application class "x-
application/x-shared-vr", a session identifier "session 1", and the name of the 
object "Opa" as well as value of the data just extracted from the application. The 
adapter performs a "shareData" call on the connector using this proxy tuple. The 
connector tries to locate any tuple in the tuple space that may match this (5) by 
making the data type and value fields in the tuple formals rather than actuals (see 
section 4). This will fail to match any existing tuple so the connector OUTs a new 
data tuple to the tuple space (Ot) (6). The original "shareData" calls returns and a 
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reference to the local proxy Opa is passed to the adapter by the connector (7). 
During (6) the connector also registers itself and the shared adapter making the 

shareData call as objects to be notified whenever the proxy (Op) changes. 
Whenever the local proxy is updated'by either the connector (in response to a 
change in the tuple space data tuple) or the adapter (in response to a change in the 
application) the adapter and connector will receive notification of the change The 
change in data value can be propagated down to the tuple space or up to the 
application depending where that change originated from. 

Now that the object O is being shared in the PSI tuple space other applications 
may also share it by connecting to the PSI. This is accomplished in a similar 
manner to the initial exporting of the object, and is shown in Figure 6. 
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Figure 6 Importing a VR object from the universe 

The adapter creates a local proxy tuple (Opb) the same application class, 
session ID, and object ID as was previously shared above, placing dummy values 
in the data value field (1). As before, the adapter performs a "shareData" request 
on the connector (2) that queries the tuple space for data tuples with a matching 
application, session, object and data name (3). However unlike before, the query 
succeeds and a matching tuple is RD in (4). The connector fills in the missing 
fields in the local proxy (Opb) (5) before registering itself and the adapter to be 
notified whenever the data in the proxy object is modified (5). A reference to the 
proxy object is returned to the shared adapter (6) and the adapter uses the VR API 
to add the shared object (Opb) into the applications VR world (7). 

Now that each adapter and connector are registered to receive updates from Op 
and Opb, and each connector is monitoring changes to the data tuple being shared 
in the tuple space Ot, updates to O are automatically propagated throughout the 
system. For example if the second application modifies the object adapter B only 
needs to change the data value in the proxy tuple Opb. The connector is notified 
of this change which updates the data tuple Ot in the tuple space. The distributed 
tuple space updates all of its replicas including the one on machine A. The tuple 
space daemon notifies connector A of the change to the tuple which updates the 
local proxy tuple Opa. The tuple notifies adapter A about the change to its state 
that then uses the application API to send the update to the application. 

If both applications A and B had been running on the same machine and had 
contacted the same connector then the shareData call issued by adapter B would 
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have been matched within the current tuples being proxied by the connector. A 
reference to that proxy would have been returned to the adapter rather than the 
same proxy it passed initially. 

Finally, even if both applications'' and 'adapters quit, the shared object Ot 
remains in the active tuple space. Therefore when either of. the adapters 
reconnected to the PSI at a later time and try to share the same data value again 
they will receive the current, last known, value from the tuple space. , 

7. Additional supporting services 
In addition to providing a series of supporting mechanisms we have also realised 
a number of supporting services on top of PSI. These services illustrate how the 
semantically neutral nature of the platform has allowed us to build upon it to 
provide an additional layer of abstraction. In particular we present an abstraction 
that supports the sharing on different media and the use of existing components. 

7.1. Sharing multimedia data 

The original L2imbo tuple space was initially designed to support streamed media, 
such as audio and video, across networks with variable performance and 
capabilities (e.g. between' a wireless connection and a local area network). 
Consequently, the PSI architecture is not.limited to facilitating the sharing of 
persistent (and fairly static) pieces of data. 

Sharing streamed multimedia data, such as an MPEG stream, between 
applications is accomplished by creating a virtual buffer in the tuple space using 
one or more Data tuples; these are updated through a combination of persistent 
and transient changes. The source of the stream keeps updating the Data tuple in 
the tuple space while any number of recipients consume the updated "buffer" and 
play the media. 

Although this method works reasonably well in practice the main advatange is 
the flexibility of the platform rather than performance. The flexibility of the 
platform allows different mechanisms for performing media streaming to improve 
performance. For example, the tuple space could be used to setup arid establish a 
well-known but separate multicast group for the broadcast of the media between 
the various platform clients using protocols like RTP. 

7.2. Shared JavaBeans 

Building on top of the platform and API, another level of abstraction has been 
added to the platform that provides the ability share public properties of arbitrary 
JavaBean components2. This functionality enables the extremely simple 

Considerable thanks are due to John Lamping at Xerox PARC for the initial development of a JavaBeans platform 
that greatly influenced the development of the shared beans layer in PSI 
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construction of collaborative applications from existing standard components. 
For example, it becomes relatively simple to construct shared graphical user 
interfaces, or indeed to share an underlying model that may then be represented in 
a number of ways in different user applications. 

This mechanism works by using the reflection facilities of the Java platform 
and dynamically constructing listeners for all bound properties of a bean. As the 
value of a bound property of a bean changes, the property change events are 
reflected as changes to tuples in the shared tuple space. Since PSI architecture 
builds upon our active notification extensions to the tuple space concept, these 
property changes are in turn passed on to any other application that uses the same 
shared instance of the component. ; 

The functionality provided means that a developer may treat PSI as a simple 
way of sharing Java components between applications that may either reside of 
the same host machine, or be spread across a distributed set of heterogeneous 
hosts on a network. The basic pattern of interaction for applications wishing to 
use the mechanism follows two simple steps. 

Attempt to connect to a shared instance of the component. 
IF instancejound THEN use that instance 

ELSE create new instance and share that with the platform 

To provide this functionality we provide two basic methods, namely connect() 
and share().- The connect(') method is overloaded to enable an application to 
retrieve particular instances of a component, for example by specifying property 
values. The shareQ method provides all of the functionality required to persist a 
component (recursively through all of its properties) into the shared space. 

This application of PSI has been used to create a number of applications. For 
example, it was straightforward to take an existing 3rd-party compiled bean that 
provided a 3D geometry viewer and create a distributed shared viewing 
application (without being able to access any of the source). 

The open design of the PSI API and tuple spaces makes it easy to add 
additional services and functionality to the platform - an application or service 
needs only to connect to the tuple,space and can then query, add or remove the 
tuples within it. One of the most common types of service is the persistence 
service. The service simply registers a callback for all tuples being added or 
removed from a particular tuple space. This callback then copies or removes 
tuples it receives from a local database. If the tuple space crashes or fails for some 
reason the backup application can restore the lost information by retrieving the 
original persistent data and relationship tuples from the database and merging 
them with the current state of the tuple space. 
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8. Conclusions 
In this paper we have presented the development of a platform that allows the 

active sharing of information across cooperative applications. The platform has 
extended an existing tuple space platform to allow applications to actively share 
cooperative information between heterogeneous applications. The developed PSI 
platform extends existing event based awareness models by promoting active 
sharing of a state using a lightweight data model. 

The developed platform needed to augment an existing tuple space by adding 
mechanisms to support notification in order to allow better support for the 
dynamic arrangement central to cooperative work. This active tuple space 
allowed the development of an API centred on a set of defined tuples. These 
tuples provided an interface that allowed object to be placed in the platform by 
creating locally proxies. The platform managed the connection between these 
local proxies and the tuples in the active tuple space to propagate updates to state 
across and between applications. 

A number of areas are being considered for future work. One option is the 
possibility of migrating some of the functionality described down into the 
underlying tuple space implementation, thereby providing a more active platform 
at the level of the networking service. We are also investigating a number of 
other tuple space implementations, e.g. IBM's Tspaces and Sun's•JavaSpaces. 
This is in order to determine if may be possible to provide our abstractions over 
these alternative base platforms, thereby providing a flexible sharing mechanism 
across completing platforms. 

Another area of continued research that needs be addressed in the future is the 
area surrounding access control and authentication. Current the platform places 
information in a shared tuple space with little or no consideration of access 
control and security management We are currently considering the investigation 
of private tuple spaces and encrypted tuples as a means of providing this form of 
access management. Our final consideration is to extend our existing set of higher 
level services by adding even more a range of CSCW tools and management 
utilities as standard services. 
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