
S. Bodker, M. Kyng, and K. Schmidt (eds.)- Proceedings of the Sixth European Conference on 
Computer-Supported Cooperative Work, 12-16 September 1999, Copenhagen, Denmark 
©1999 Kluwer Academic Publishers. Printed in the Netherlands 371 

An Experiment in Interoperating 
Heterogeneous Collaborative Systems 

Prasun Dewan 

University of North Carolina, USA 

Anshu Sharma 

Oracle Corp., USA 

Abstract: Currently, collaborative systems manipulating the same artifact but 
implementing different policies and architectures cannot interoperate or 
"collaborate" with each other. Therefore, it is not possible for users to use 
different collaborative systems to work on a single shared artifact. As an initial 
step towards such interoperation, we have carried out an experiment involving the 
interoperation of two heterogeneous collaborative spreadsheets. The experiment 
has resulted in some general protocols, techniques, and lessons applicable to the 
interoperation of systems offering different concurrency-control - policies, 
couplings, and architectures. The paper surveys different approaches along these 
three dimensions, motivates the rationale for inter-operating them, identifies 
issues m their interoperation, and presents and evaluates solutions for a small 
number of interoperation scenarios in the surveyed design space. 

Introduction 
The promise of computer supported cooperative work has resulted in a 
proliferation of collaborative systems supporting the same task. For instance, 
almost every infrastructure developer provides a shared whiteboard; and several 
custom-ones have been developed as both research and commercial products. 



372 

These systems tend to be heterogeneous, that is, offer different policies and 
architectures for supporting collaboration As the usage of these systems gains 
popularity, it will become important for them to be able to interoperate with each 
other so that collaborators can use different systems to manipulate the same 
artifact. Such interoperation is useful for two related reasons: 

• User Preferences- Systems tend to be heterogeneous because they make 
different tradeoffs, each offering a unique set of benefits. Collaborators may 
wish to use different policies because different features are important to them 
This is true in single-user interaction For instance, users tend to seldom agree 
on a particular word-processor or word-processor settings It is not likely to 
change when they collaborate with others. 
• User Constraints and Training: Users in different organizations may be 
trained in and constrained to use' different systems. They may not have the 
time, desire, or ability to learn a new, common system in order to collaborate 
with each other. 

In general, formation of work groups is dynamic, usually in response to an 
identified need, and brings together people with different training, skills, and 
work habits. Thus, members of these groups are likely to use different systems 

It can be argued that standardization of collaboration systems will eliminate 
the need for interoperation. Even1 if standardization is successful in this area, we 
believe the standardized collaborative tools, like single-user tools of today, will 
offer a range of parameters Not all collaborators are likely to prefer the same 
configuration, thereby requiring interoperation at the policy and architecture (but 
not system) levels. It is these levels that the paper mainly focuses on. 

The general concept of interoperation is not new - this is the classical problem 
of heterogeneous software systems. Specific instances of this problem have been 
addressed in programming languages, operating systems, and database systems. 
These solutions are applicable to the collaboration domain, since collaborative 
systems tend to use different underlying software. However, they are not 
sufficient for the collaboration domain since they do not address differences in 
policies and architectures invented in this area. 

Because of the newness of this field, researchers and developers have so far 
concentrated on building new kinds of collaborative systems, disregarding how 
their tools would work with those offering alternative solutions. The main 
exception is the work on DistEdit (Knister 90), which explored the use of 
heterogeneous single-user editors in a single collaborative session. However, we 
know of no previous work on interoperation of two complete collaboration 
systems. ,• 

In order to understand some of the basic issues and solutions involved in such 
interoperation, we carried out'an experiment involving interoperation of two 
different collaborative systems. The experiment has resulted in some general 
protocols, techniques, and lessons applicable to the interoperation of systems 



373 

offering different concurrency-control policies, couplings, and architectures. We 
have found that existing mechanisms for supporting latecomers in a session 
support interoperation along the coupling dimension. We have also devised 
general protocols and policies for supporting interoperation along the 
concurrency-control dimension We have found that the choice of the policies 
being interoperated influences the fairness of the interoperation, and that tickle-
locks and queue-based floor control offer better fairness than regular locks and 
floor control, respectively. 

The rest of the paper is organized as follows. We first survey the dimensions of 
coupling, concurrency control, and architecture, identifying and evaluating some 
of the popular solutions along each of these dimensions. The purpose of this 
section is to give the reader background in some of the concepts needed to 
understand our work in interoperation, and to show the need for allowing 
alternative solutions along each of these dimensions to coexist in a collaborative 
session Next we outline some of the basic issues in interoperation. We then 
describe the two systems we interoperated, abstracting out details not relevant for 
the interoperation experiment The next section ' is the bulk of the paper, 
describing and evaluating our,approach to interoperation of the two systems. 
Finally, we present conclusions and directions for future work. 

Background 

Collaboration systems differ along a variety of dimensions. We consider here the 
dimensions along which our two systems differed: coupling, concurrency control, 
and architecture. We survey some of the popular solutions along each of these 
dimensions and enumerate their advantages and disadvantages to show that none 
of these solutions is preferable over all others. 

Coupling 

Coupling [Dewan 95] determines how the displays of different users are linked to 
each other. One of the popular policies for coupling, termed WYSIWIS (Stefik 
87) (What You See Is What I See), ensures that all users' displays are identical. 
This policy is ideal for meetings in which all users share, a common focus. 
However, it has two main problems. First, experience has shown that users get 
involved in "window wars" and "scroll wars" as they try to place their-windows 
and scrollbars at different positions (Stefik 87). In general, we can expect a war 
whenever users are forced to share something they do not want to share. Second, 
broadcasting each event to all workstations creates performance problems, which 
are particularly unfortunate when users to do not wish to share all events. 

Therefore, there has been considerable work in identifying non-WYSIWIS 
coupling by exploring dimensions' along which coupling can be relaxed (Stefik 
87, Hill 94, Dewan 95). Many systems allow collaborators to see different views 



374 

of a common model. Others also allow them to determine which of the user-
interface objects such as cursor positions and scrollbars are coupled. Some 
support asynchronous coupling, allowing users to determine when changes are 
transmitted to/received, from others. Transmission/receipt of changes can occur 
explicitly because of execution of special commands or implicitly as a side effect 
of other commands (such as moving the cursor out of the object changed) or 
passage of time (e g. coupling-every hour). While these non-WYSIWIS schemes 
give collaborators better performance and flexibility, they have the disadvantage 
that users do not have "referential transparency", that is, cannot refer to objects 
based on their screen appearance and location. For instance, "the red square on 
the upper left corner", may not be meaningful to all users if they can color and 
scroll their displays independently. Another important disadvantage is that non-
WYSIWIS coupling modes cannot be implemented by systems such as Microsoft 
NetMeeting that allow sharing of existing single-user programs 

Thus, each of these coupling schemes has its advantages and disadvantages, 
and which policy is chosen may depend not only on the collaboration task but 
also the individual users. For instance, some users may prefer reuse and 
referential transparency .offered by WYSIWIS systems, while others may prefer 
the performance and flexibility of an asynchronous non-WYSWIS interaction. 
Interoperation of the heterogeneous coupling schemes would allow the individual 
user rather than the whole group to make the choice 

Coupling Architecture 

There is also considerable variation in the architecture used for coupling users. 
In general, users' actions are processed by multiple application layers such as the 
kernel, window system, toolkit, and application semantics. Different architectures 
differ in the way in which they replicate these layers. Some systems completely 
replicate the application, some completely centralize it, while others centralize the 
top-level (semantics) layer but replicate the layers below it. These architectures 
can be described using the generalized zipper model [Dewan 98]. The model 
assumes that if a layer is replicated, all layers below it are also replicated. 
Differences in architectures can result from differences in the top-most layer that 
is replicated. The higher this layer,, the more the replication degree of the 
architecture. This degree is thus increased by "opening the zipper" until we reach 
the fully replicated architecture. Figure 1 shows the zipper opened to different 
degrees for the same set of layers. 

Replicating a layer has two main advantages. First, it allows objects defined in 
the layer to be uncoupled, since multiple,instances of these objects are created for 
different users. Second, all processing in that layer is done on the local 
workstation, thereby giving better performance. The disadvantages are that 
replicas are difficult to synchronize; not all workstations may have the software 
and hardware to run a replica, and performing the same operation multiple times 



375 

in different replicas can be expensive, cause bottlenecks if a centralized resource 
is accessed by the operation, and result in undesired semantics if the operation has 
a side effect (such as printing a check or sending a mail message ) 

Figure 1: Different Instances of the Zipper Architecture 

Thus, in some cases, the architecture of an-application depends on its layers In 
others, it depends on the workstations and couplings of the individual users. In 
these cases, it is important to interoperate architectures suitable for different sets 
of collaborators. 

Concurrency Control 

Since collaborative applications- allow multiple users to alter the" state of the 
system, certain inter-leavings of user actions can lead to inconsistent state. Most 
collaborative systems either provide mechanisms to prevent any inconsistencies 
to appear in the' system, or resolve them at • a later (suitable) stage. These 
mechanisms may or may not involve active user involvement. The term 
concurrency control is used to describe these mechanisms. 

The aim of concurrency control mechanisms is to allow for maximum 
concurrency while trying to'restrict the system from becoming inconsistent or 
irrecoverable. Different systems differ in the degrees to which they satisfy these 
two competing goals. " 

The simplest form of concurrency control is floor control In this scheme, only 
one user is allowed to give input to the system at any given time. Any user that 
wishes to become active has to request the floor. If the floor is free, the request 
succeeds and the user gets the floor. If some other user has the floor, the result of 
the request can be one of many possible options. The simplest scheme is to 
discard the request. Otherwise, the request may be en-queued,ahd all the users 
who have requested the floor may get it on a first-come-first-served basis. 



376 

Another option is to have priorities associated with each user or request, and use 
priority queues. In some variations of this scheme a moderator may decide whom 
to relinquish the floor to. All these schemes are minor variations of what can be 
collectively called turnrtaking protocols (Ellis 91). 

These protocols are easy to implement, and in some cases (e.g mediated 
meetings) very suitable. However, they limit parallelism since only one user is 
active at any instant Even if two users' actions do not conflict, they are not 
allowed to perform them concurrently. For example, two users will not be 
allowed to edit different cells of a spreadsheet even if there is no conflict. This is 
overly restrictive for many interactive groupware applications. Moreover, some of 
the discussed floor control schemes can lead to starvation (e g. priority queues). 

These problems are addressed by lock-based concurrency control, which 
allows users to obtain locks on1 different' objects constituting the collaboration 
artifact such as cells in a spreadsheet. Two or more users can obtain locks and 
thus work concurrently as long as they do not wish to work (acquire locks) on the 
same objects. Locking is a popular concurrency control scheme and has been 
implemented in several systems such as (Newman-Wolfe 92, Greenberg 94). 

Several variations of this basic scheme have been implemented to optimize 
performance, user-effort, and concurrency. It is usually cumbersome for a user to 
explicitly request and release locks.'In many cases, it is possible for the system to 
implicitly issue lock.requests as a side effect of other operations ,such as selecting 
an object (Newman-Wolfe 92, Greenberg 94). At the same time, the user should 
be allowed to explicitly request locks on several objects to perform atomic 
operations. • ' 

A problem in distributed systems is high latency and, thus, response time. A 
simple-minded implementation of locking scheme would be to maintain the state 
of the locks on a single host. In this case, for each lock request, the remote users' 
host would have to communicate with the centralized process resulting in high 
latency for remote users. Noting'thatlhere is locality of reference in the user's 
lock requests, some systems cache locks (Prakash 94). When a user no longer 
needs a lock, instead of releasing the lock to the central lock manager, the lock is 
locally held until some other user requests the same lock. The requests made by a 
new user would take more time now because the request has to go to the central 
manager and then relayed to the host that currently holds the lock. But as long as 
there is locality of reference and different users work on different subsets of 
objects, this scheme results in faster,response on the average. 

If one user holds the lock for ,a long time, other users may have to wait 
indefinitely. This problem can be solved to some extent by using the concept of 
tickle-locks (Greif 86). These locks have an associated time-to-live value 
associated with them. If the user does not perform any operation during this time, 
the locks are released automatically. Depending on the application semantics, the 
value of the object that the user is editing may or may not be committed before 



377 

releasing the locks (In some cases, it may be more appropriate to perform an 
undo operation before releasing the locks). 

Locking schemes fall into the category of pessimistic concurrency control. A 
slightly optimistic locking scheme (GreenBerg'94) can be implemented as follows 
to improve the performance Whenever a user requests a lock, the control returns 
to the application immediately and the user can modify the state of the object 
while the request is being processed, possibly at a remote site. If the lock request 
is denied, an undo operation is performed on the object. 

Fully optimistic concurrency control (not addressed by our experiment) is 
offered by systems such as COAST (Schuckman 96) that support transactions A 
transaction is a sequence of instructions that executes atomically; that is, either all 
or none of its steps complete execution. Senahzability and recoverabihty are two 
important properties of transactions. Senalizabihty means that the concurrent 
execution of a set of actions is equivalent to some serial execution of the same 
actions. Recoverabihty means that each action appears to be all-or-nothing: either 
it executes successfully to completion {commits), or it has no effect at all {aborts). 

Both locking and transactions offer more concurrency control than floor 
control. An important disadvantage of locking is that it can lead to deadlocks. An 
important disadvantage of transactions is that they may abort, undoing possibly 
hours or days of user work Merging can be used as an alternative to abort 
(Munson 97), but it cannot automatically resolve all conflicts. • •' • 

Thus, as with coupling and architecture, the choice of the concurrency control 
may depend on the individual user. 

Interoperation Issues 
Interoperability is not a new concept. The advent of the internet, which is an 
interconnection of heterogeneous systems, forced systems designers to create 
tools such as ftp and mail that would allow users on different systems to work 
together on shared artifacts. For instance, two users can use ftp to share files that 
may be stored in a different format on their respective file systems (e.g. AFS and 
Windows). More recently, CORBA (Vinoski 97) allows objects created on 
different platforms using different programming languages to interoperate. Java 
RMI (Remote Method Invocation) allows interoperation among objects executing 
on different platforms. However, none of the previous systems addresses 
interoperability along the three dimensions discussed above. Such interoperation 
requires us to address three kinds of problems. 

Semantics 

It is not always clear as to what the semantics of two different heterogeneous 
schemes are when they are integrated. In other words, a consistent state according 
to one scheme may be inconsistent according to another For example, in 



378 

WYSIWIS coupling, all users see the same state at all times, while in a non-
WYSIWIS interaction, this is not the case. We will see later how we address this 
and other forms of inconsistencies'that appear in our experiment. To better 
understand the nature: of this problem, consider below a more complicated 
inconsistency scenario that does,not manifest itself in our experiment. 

Suppose Jim is using a lock-based system, which means that any changes that 
Jim makes will be accepted. If Jane wants to use a transaction-based concurrency 
control scheme, then it is not clear as to what should happen in case of conflicts 
Suppose Jim acquires a lock on cell A with value "Apple". Now, Jane reads the 
value of the cell A ("Apple") and wants to change it to "Orange". Since, Jane read 
a correct value and changed it to another correct value, according to transaction 
semantics, the change will be committed But this is wrong according to the lock-
based system's consistency criterion, since as long as a user has a lock on an 
object, no other user can change the .value. Now, if Jim writes a new value 
("Banana") into cell A, his changes should be aborted by transaction semantics. 
But there is no concept of abort in lock-based systems 

A solution to this problem would be to deny any transaction operation as long 
as any user has a lock on the object However, in a collaborative application it is 
not very clear as' to what constitutes a read operation, since users may not 
explicitly execute this operation.' Typically, the system responds to the 
commitment of a change' by one user by updating the displays of the remote users 
without knowing if a remote user' has actually read the value. A conservative 
approach would be to assume that all values displayed to the user are considered 
as read, but this would unduly limit the concurrency. 

Implementation 

In general, groupware applications and infrastructures are built on different 
platforms and do not adhere to any standard. For instance, Habanero (Chabert 98) 
is a Java-based system while Suite (Dewan 95) uses C and has its own RPC-based 
communication mechanisms. In order to interoperate the systems, both the 
semantic and syntactic gaps have to be bridged. A language- independent system 
such as CORBA can be used, to allow objects on different systems to 
communicate with each other. Thus, the problem is reduced from providing 
many-to-many translations to providing' a translation between every system and a 
standard such as CORBA. These problems have been studied and solutions 
suggested and implemented elsewhere. In our solutions, we assume that the 
systems are implemented in Java or have proxy objects written in Java The proxy 
objects may communicate with the existing systems through any suitable 
mechanism such as CORBA. 

Deadlock, Fairness 

These two issues arise in interoperation of concurrency control schemes Apart 



379 

from being correct, these schemes should also be fair and not susceptible to 
deadlocks. As we saw earlier, different schemes fare differently on these criteria. 
Floor control with queuing is fair and precludes deadlocks. On the other hand, 
lock-based concurrency control can lead to starvation and deadlocks. When 
interoperating schemes with different behaviors with respect- to fairness and 
deadlocks, it is difficult to ensure that the resulting system does not introduce new 
forms of unfairness and deadlocks that were not present in the original systems. 
The design of interoperability mechanisms should take these factors into 
consideration. 

Case Studies 

Before we discuss how we addressed these issues in our interoperability 
experiment, we describe the two systems we interoperated. 

Habanero Spreadsheet •' 

Habanero (Chabert 98) is a system developed at NCSA that provides a toolkit for 
building collaborative applications. It supports full replication by running a copy 
of the application at each user's machine. It receives events from each replica and 
broadcasts them to all other replicas. It also supports latecomers by dynamically 
creating a new replica for the new user. Finally, it provides flexible mechanisms 
for implementing coupling and concurrency control. It provides a central module 
for sequencing the coupled events received from different replicas. 

We used Habanero to implement a simple spreadsheet offering fixed 
synchronous, near-WYSIWIS coupling (that allows users to scroll independently 
) and ordinary and queue-based based floor control 

UNC Spreadsheet 

We also implemented, using libraries developed at UNC, another version of the 
spreadsheet that differed from the Habanero spreadsheet in the architecture, 
coupling, and concurrency-control dimensions. It is built using the model-view-
controller paradigm (Krasner 88), with the controller combined with the view. 
Instead of replicating the whole application, it replicates the view but not the 
model. It offers flexible non-WYSIWIS coupling, allowing users to choose 
whether they wish to send values incrementally (as they type in a cell), or when 
they move the cursor away from the cell. It offers a large range of locking policies 
including centralized, cached, optimistic, and tickle locks. Like the Habanero 
spreadsheet, this spreadsheet supports latecomers by dynamically creating a view 
for the new user, and allows independent scrolling. 



380 

Flexible Floor Controller 

Spreadsheet 
Replica 

User 1 

Spreadsheet' 
Replica l r 

User 2 

Flexible Lock Controller 

Spreadsheet Model 

•Spreadsheet 
• V i e w 

Spreadsheet 
View 

• . I 
User 3 User 4 

Figure 2 Habanero Spreadsheet (left) and UNC Spreadsheet (right) 

Interoperation Policies and Mechanisms 
Given two systems used by two, different sets of users, we must consider two 
aspects of the behavior of the interoperating system. 

• Local Behavior: The behavior of each system with respect to its users. 
Thus, in our experiment, it defines the architecture formed for each set of users, 
and the semantics of coupling and concurrency control for each set of users. 

• Interoperation Behavior: The behavior of the system with respect to users 
of different systems. Thus, in our example, it defines how the architecture of each 
system is changed to accommodate the other users, and the semantics of the 
coupling and concurrency control between users of the two different systems. 

Ideally, the local behavior of the original system should not change in the 
interoperating system. Otherwise, the added flexibility of collaborating with the 
other set of users comes at the cost ..of changes to the preferred mode of 
collaboration among users of each set. Therefore, in our interoperation 
experiment, we ensure that the local behaviors along each dimension are 
preserved. 

Ideally, also, the interoperation behavior should be the same as the local 
behavior of each system to allow each set of.users to use the preferred mode of 
collaboration with the other set. Of course, this is not possible when the two 
behaviors are different Thus, an interoperation behavior must be defined for each 
dimension of heterogeneity that is consistent with both local behaviors (by being 
an abstraction of them) and as close to them as possible. 



381 

Coupling 
Let us first consider the dimension of coupling. The coupling semantics of the 
two systems to be interoperated are: 
• Habanero Spreadsheet: Each user sees the same values as the other user. Each 

change to a value is immediately sent to other users. 
• UNC Spreadsheet: Users changes to shared objects can be buffered, and these 

changes are seen by other users when they are committed (implicitly or 
explicitly): Coupling settings determine whether changes are committed on 
each keystroke or when the user moves the input cursor away from a cell. 

The interoperating semantics cannot be the same as both of the local semantics, 
which are different. Therefore, we define the following compromise semantics for 
interoperation- Changes made by one user to an object are seen by other users 
sharing the object when these changes are committed (implicitly or explicitly). 

These semantics meets our requirement of being an abstraction of the two local 
semantics. In fact, they seem identical to the coupling semantics of the UNC 
spreadsheet. However, there is a subtle difference. In the case of the UNC 
spreadsheet, each user knows that others can buffer changes, and thus hide 
intermediate results that are not to be discussed. Thus, they may think it rude if 
they receive such results. However, in the interoperating spreadsheet, this 
assumption cannot be made regarding users of the Habanero spreadsheet. Thus, 
users of the UNC spreadsheet must treat local and remote users differently. Users 
of the Habanero spreadsheet must, of course, treat local and remote users 
differently, since they are guaranteed synchronous coupling with the former but 
not the other. These semantics are realized in our example by keeping the model 
of the UNC spreadsheet consistent with replicas of the Habanero spreadsheet. 

Coupling Architecture 

Figure 3 shows the interoperation architecture for implementing these coupling 
semantics. We extended the Habanero spreadsheet so that it appears to the model 
of the UNC spreadsheet as a view. When users of the two systems need to join 
each other in a' collaborative session, we dynamically add this modified 
spreadsheet as a new user to both systems. Since it does not interact with an 
actual user, we refer to its "user'"as "dummy user". 

The modified spreadsheet translates between the events received from the two 
systems to ensure that the UNC model is kept consistent with the Habanero 
replicas. The UNC model and the Spreadsheet replicas expect to receive new cell' 
values (from view and other Habanero replicas, respectively) as strings and 
CellValue objects, respectively. A CellValue object is basically a wrapper of the 
cell string entered by the user; therefore, the translation between these two kinds 
of values is straightforward and • simply involves wrapping and unwrapping a 
string. However, the architecture of the system remains the same even for more 
complex translation logic. For instance, if the Habanero spreadsheet had 



382 

implemented full WYSIWIS interaction by coupling the scrollbars, the translator 
would simply ignore these events. Similarly, if the UNC spreadsheet had stored 
cell values as integers, the translator would be responsible for parsing and 
unparsing the string and integer representations, respectively 

The modifications to the Habahero spreadsheet were minor and consisted of 
about 100 lines of code. The modified spreadsheet implements only those aspects 
of the view of the UNC spreadsheet that are relevant to the model. It does not 
implement'other aspects (such as changing the coupling policy) that are seen by 
the user but not the model. As it turns out, it implements the full functionality of 
the Habanero spreadsheet. This is; because we did not find a convenient way to 
execute different programs for the different replicas of the Habanero spreadsheet 
This means each Habanero replica must implement the union of the functionality 
needed by both the real users and the' dummy user. The UNC spreadsheet allows 
the views of a model to execute different programs. Otherwise, the program 
executed by the dummy user would have had to implement the union of the 
functionality of the two systems and the translation function. 

i Spreadsheet Model 

Spreadsheet' Spreadsheet' Spreadsh 
Replica Replica i Rephc 

User 1 U s e r > - ^ \ / .Du 

, r^y us 
, ' Coupler 

Figure 3 Architecture for Interoperating Coupling 

We can describe the approach used in our interoperation architecture in terms 
of the abstract zipper model described before (Figure 4) Two different 
architectures can be made to interoperate by creating a module that appears to be 
a branch of both architectures and translates between the events received from the 
two architectures according to the coupling interoperation semantics. 

If both systems support latecomers, then the new branch can be created 
dynamically to allow the two groups of users to join each other after they have 
done some intra-group collaboration.' If the two systems also allow the branches 
to execute different programs, then the individual systems do not have to be 
changed. The users of each system appear to the users of the other system as a 
single user. / ' 

e e t ' j Spreadsheet Spreadsheet 
^ ,' .View '•' ' View 

:";. I' ,. I 
User 3 i upr d 

mmy , • u s e r 4 

er 



383 

Figure 4 Interoperation in Terms of the Zipper Model 

Concurrency Control Semantics 

Let us now consider the dimension of concurrency control. Its semantics in the 
two systems are: 
• Habanero Spreadsheet. The default is ordinary floor control. Users can change 

it to queue-based floor control. 
• UNC Spreadsheet: The default is ordinary (implicit and explicit) centralized 

locks Users can change it to tickle, optimistic, or cached locks 
We use the following interoperation semantics: If the user has reserved an 

object (through floor control or fine-grained locking), then no other user can 
manipulate the object. 

As in the case of coupling, the interoperation semantics are a weaker form of 
the semantics of the two systems. As we shall see later, they are weaker than we 
might desire, since they make no promises about fairness. For certain concurrency 
control modes (queue-based floor control and tickle locks), we will be able to 
offer stronger semantics with better fairness properties. 

Concurrency-Control Architectures 

We implemented two different architectures for interoperating the concurrency 
control of the two systems. In one, the floor-controller is the master or server, and 
the lock-controller is the slave or client (Figure 5); while in the other, the reverse 
is true. The server system is the one that keeps global information about which 
objects are reserved (through locking or floor control). The client system must 
check with it before granting a reservation request to its users. The client system 
makes this check in addition to the check it makes for local conflicts. All users of 
the client system appear to the server system as a single "dummy user". 

There is a third architecture possible in which both systems are considered 
equal and replicate the reservation information. However, we did not consider this 



384 

alternative. 
Unlike coupling, our schemes for interoperating concurrency-control require 

the two systems to follow certain protocols that collaboration systems currently 
do not. As we will argue later, these protocols also support extendibility, and are 
thus useful even if interoperability is not a goal. Nonetheless, since current 
systems must be changed to implement these protocols, we may be constrained by 
what kind of changes can be made easily to a system. The architecture determines 
the protocol - thus, which architecture is chosen depends on what kind of changes 
can be easily made to a system. It is for this reason we defined both architectures 
and associated protocols to give the interoperator some flexibility. 

Ijljie^J gjsjjjjjjl jjjggj^l 

Figure 5 Floor Controller as Master 

General Protocol . 

We first present a general protocol that is sufficient to implement both 
architectures, and later, under the discussion of each architecture, identify which 
aspects of this protocol are necessary for it. 

We assume that the floor-control system generates the following events 
• FloorRequestedEvent: This event is generated whenever a request for the 
floor is made by the user. This is a vetoable event, which means that any of 
the event listeners can veto the event, and the object that generated the event 
gets notified of the veto. We assume that whenever the FloorRequestedEvent 
is vetoed, the floor-control system denies the request. The event also contains 
reference to a principal object that identifies the user. 
• FloorAcquiredEvent: This event is generated by the floor-controller when 
a user successfully acquires the floor. This event also contains reference to the 
principal. This event is necessary because one of the (possibly) several event 
listeners may have vetoed the request for the floor. 
• FloorReleasedEvent: This event is generated when the floor is released by 
a user and also contains a reference to the principal. 

We also assume that the floor-controller acts as a server for the operations, 
AcquireFloor and ReleaseFloor, which take a principal as an argument. 

Similarly, we assume that the lock-based concurrency control system generates 



385 

the events LockRequestedEvent, LockAcquiredEvent, LockReleasedEvent, and 
serves the requests, AcquireLock and ReleaseLock, • which are like the 
corresponding floor-control events/requests except that they take an extra 
lockable argument. 

Though this protocol has been defined for supporting interoperability, it also 
supports extendibility, since it allows user-supplied modules to veto events and 
make requests. 

This protocol does not take into account differences in the various forms of the 
locking and floor-control policies implemented in the system, abstracting out 
these differences Thus, the interoperation code we give below; will work for all 
variations of these two policies implemented in the two systems, though, as we 
will see below, the fairness of the implementation will depend on the exact 
variation. 

Neither of our two systems originally implemented this protocol 
Implementing the complete protocol required about 10 lines of additional code in 
each spreadsheet 

Floor Controller as Master: Policy 1 

Figure 6 illustrate the run-time architecture of the interoperability mechanism of 
this policy. The LockToFloorProxy is the representative of the Lock-Controller to 
the Floor-Controller, translating between the lock events and the floor requests. 

The proxy executes the following pseudo algorithm: 

LockToFloorProxy 

//Lock system wants a lock 
On (LockRequestedEvent(Lockable item, Principal user)) do 

// check with floor controller if dummy user can get lock 
If ( -i floorControllerObject acquireFloor( LockUser)) 

Veto 
// Keep track of which items are locked so that floor can be released , 
On (LockAcquiredEvent(Lockable item, Principal user)) do 

Lock-status[item.id]=LOCKED, 
//When all locks are released, release floor 
On (LockReleasedEvent (Lockable item, Principal user)) do 

Lock-status[item]=FREE, 
For all lockables item do 

If (Lock-status[item]==LOCKED) Return, 
floorControllerObject.releaseFloor( LockUser) 

It implements the interoperation semantics discussed earlier. When a lock user 
requests a lock, the lock-system first checks for local conflicts and then asks the 
proxy to acquire the floor from the server as the dummy user, LockUser Thus, 
locks are denied as long as the floor is not with LockUser. Conversely, when any 
user has a lock on an item, the floor is with LockUser and thus only the users of 
the lock-based system are active. And since the lock-based and floor-control 
systems are (assumed to be) correct, the resulting system also correctly 



386 

implements the interoperation semantics In order to release the floor when all 
locks are released, the proxy must duplicate the semantics of the lock controller 
by keeping track of which items are locked 

In this policy, the lock-based system would have an unfair advantage, as even 
if one item were locked by any user, the floor would stay with the lock-based 
system. So, the floor-control users may be easily starved. It is important to note 
here that even though the floor-control and lock-based systems may be free of 
starvation, the interoperation scheme introduces starvation into the system The 
starvation is due to the fact that LockUser can hold the floor for infinite time even 
if the users of the lock-based system acquire the locks for finite intervals 

Figure 6 Proxy-based Runtime Architecture 

Such starvation is particularly unfortunate when the floor-control system 
enqueues requests, since if the floor is !with the lock-based system, the users of 
this system can continue to lock new items even after a user of the floor-control 
system makes a request for the floor. 

Floor Controller as Master: Policy 2 

This policy fixes the problem above and assumes queue-based floor control We 
add two additional objects to the runtime architecture - a FloorListener object, 
and a State object. The FloorListener listens for events from the floor controller in 
order to determine if there is a pending request for the floor. This information is 
now used by LockToFloorProxy to determine if future lock requests should be 
denied. It is stored in the State object, which is shared by FloorListener and 
LockToFloorProxy. The code below describes the behavior of the three objects. 

This code differs from the previous one in that whenever a user requests the 
floor, a flag is set, and any subsequent lock requests are denied. The flag is reset 
whenever a user of the floor-controller gets the floor. We could instead use a 
count of the number of users in the floor queue, but that could starve the users of 



387 

the locking system, since the count may never go to zero. 

State 

Boolean floorRequesied initially false 

LockToFloorProxv 

On (LockRequestedEvent(Lockable item, Principal user)) do 
// floor system has requested floor, disallow further locks 
If( floorRequesied ) Veto, 
If ( NOT floorControllcrObject acquireFloor( LockUser ) ) 

Veto 

On (LockAcquiredEvent(Lockable item, Principal user)) do 
Lock-slatus[item id]=LOCK£D 

On (LockReleasedEvent (Lockable item, Principal user)) do 
Lock-status[item.id]=FREE, 
For all lockables item do 

If (Lock-status[item id]==LOCKED), 
Return, 

floorControllerObjecl releaseFloor( LockUser) • 

FloorListener " r ' 
// keep track of whether floor-control system has a pending request 
On (FloorRequestedEvent(Lockable item, Principal user)) do . • . ' 

floorRequested=true, 

On (FloorAcquire'dEvent(Lockable item, Principal user)) do 
floorRequested=false, 

In comparison to the previous policy, this is fairer to the users of the floor-
control system. Assuming that users of either system reserve the floor/object for 
finite times, users will be able to get their reservations in finite time. This time 
can be further decreased (for both systems) if tickle locks are used. 

Lock Manager as Master 

Finally, we consider the implementation of the second policy under the dual 
architecture that assumes the lock-manager as the master. The LockToFloorProxy 
and FloorListener objects are now replaced by their duals, a FloorToLockProxy 
and a LockListener object. A floor request from the slave is mapped by the proxy 
to a reservation of all the locks in the master. The floor release event asks the lock 
system to release all locks 

As before, a shared state object keeps track of a pending request from the 
floor-control system to, prevent .new locks from being acquired by users of the 
lock system. Policy 1 can be implemented for this architecture by ignoring such a 
request. As can be seen by the code, the two architectures and associated policies 
require different aspects of the general protocol to be implemented The first 
architecture requires the floor-control system to implement the server operations 
for acquiring and releasing the floor, while the second architecture requires the 



388 
i 

lock control system to implement the server operations for acquiring and 
releasing locks. The first policy, which ignores queued floor requests, does not 
require the server system to broadcast events, while the second policy does. 

State 
Boolean floorRequested initially false ' 

FloorToLockProxv 

//Get all locks or none to prevent deadlocks 
On (FloorRequestedEvent(Pnncipal user)) do 

For all lockables item do ' 
If( NOT acquireLock(item, FloorUser) Veto, 

For-all lockables item do 
ReleaseLock(item, FloorUser), 

• floorRequested = TRUE, 

On (FloorAcquiredEvent(Lockable item. Principal user)) do 
FloorRequested = FALSE, 

On(FloorReleasedEvent(Lockable item, Principal user)) do 
For all lockables item do 

ReleaseLock(item, FloorUser) 

LockLtstener 

// Disallow further lock requests if there is a pending floor request 
On (LockRequestedEvent(Lockable item, Principal user)) do 

If (floorRequested) Veto, 

It is important to ensure that the interoperating system not only not introduce 
inter-system unfairness but also deadlocks. In all of our policies, the two systems 
cannot simultaneously reserve shared items. When the floor-control system is the 
master, this is easy to ensure, since either the lock-system or the floor-system has 
the floor. When the lock-control system is the master, we make sure that if a floor 
request cannot get all locks, it releases all locks it does manage to acquire 

In our implementations, as mentioned before, the entire concurrency control 
protocol has been implemented by both systems. This has allowed us to 
dynamically change the architecture and policy at runtime. 

The proxy and state code required to implement all of the policies above is 
about 800 lines. Recall that this.code resides outside the individual systems, and 
interacts with these systems using the concurrency-control protocol. 

Conclusions and Future Work 
The surprising result from this work is that it is possible to interoperate a 
synchronously-coupled, fully replicated, floor-control system with a flexibly-
coupled, partially centralized, lock system; that it is possible to reason about the 
semantics of the interoperating system; that it is possible to devise clean 
architectures for interoperation; and that such few changes are required in the two 
systems to interoperate. 

In this paper, we have motivated the need for interoperating the two systems 



389 

by showing that the features they implement are found in a large number,of 
existing systems and that, each set of features has important advantages that the 
other set does' not'haveV We have'identified lhteroperation 'semantics' that' are 
abstractions of and close to the local sernahtics'of the individual systems ' ' • ' 

We have shown that existing latecomer support can'be used to implement trie 
interoperation semantics for'coupling,'and tliat if the existing'systems allow 
different branches in the zipper architecture to execute different programs, then 
interoperating the coupling does not require changes to the two systems '. ;. • 
, We have identified two different proxy-based architectures for interoperating 

the concurrency-control components of^the two systems. In one,'.trie floor-control 
system keeps global reservation information, acting as a server to the lock.systern; 
while in the other,i the reverse is, true.,For each, architecture,-we identified two 
interoperation pohcies.'.The first policy applies,to both ordinary 1and;queue:based 
floor control, but can result in starvation event if the original systems arê  free of 
starvation. The second policy is fairer but apphes'-'only-to queue-based floor 
control. ' ' • • , • • ' „'.i ,>. W ,: i :,. 

These architectures and policies require the interoperating systems tofollow a 
certain concurrencyrc6ntrbl protocol that current' collaborative" systems do not. 
The exact protocol depends on ,the architecture'and policy used. We" have 
identified a general protocol,that applies to both architectures and policies. It does 
not take much code.to implement and is alsoJ'useful.,for-.extendibility. 

The question that this paper does not answer, is whether users, would be 
satisfied with'.interoperation. semantics that are-.different from their preferred 
semantics. Given that the alternative'.is either: not collaborating with users with 
different preferences or conforming to a standard system" and policies, we believe 
the answer is yes. A firm answer to this question' rejquires modifications' to 
production software systems arid extensive user-studies'^which' are beyond the 
scope of this work. •,, •: ",v • , . ,, . ' - , , , . ,. - , , , , , 

Future work is also required to address interoperation policies,for concurrency 
control with .better fairness'properties. Moreover, it.will be,.useful to tackle 
interoperation'issues^not addressed .by -this' work such as interoperation of more 
than two systems; and interoperation of other points in the.large design space of 
collaboration system's. In "particular,' it will be useful'to study how popular 
awareness policies can .be interoperated:' The approach 'used; in 'our work of 
reducing all users of a foreign system'to one user is not likely to give the desired 
awareness interoperation-semantics, and adaptations/extensions to it, will be 
required. Finally, it isimportant to determine the limits ofjnteroperabihty - when 
are two competing approaches so inconsistent that no useful - interoperation 
semantics can be defined. This paper provides.a framework for.attacking some of 
these unresolved issues. " ' • 


