
S. Bodker, M. Kyng, and K. Schmidt (eds.). Proceedings of the Sixth European Conference on 
Computer-Supported Cooperative Work, 12-16 September 1999, Copenhagen, Denmark 
© 1999 Kluwer Academic Publishers. Printed in the Netherlands 431 

Augmenting the Workaday World with 
Elvin 
Geraldine Fitzpatrick, Tim Mansfield, Simon Kaplan, David Arnold, 
Ted Phelps, Bill Segall 
CRC for Distributed Systems Technology, The University of Queensland, Aus
tralia 4072. Ph: +61-7-33654310. Fax: +61-7-33654311. 
Email: {g.fitzpatrick,t.mansfield,s.kaplan,amold,phelps,bill} @dstc.edu.au. 

This paper addresses the problem of providing effective, computer-based support for 
awareness and interaction in the distributed workaday world We report the story of how 
our content-based pure notification service, called Elvin, became widely adopted in our 
organisation and elsewhere, augmenting the virtual work environment, and providing 
perceptual resources for awareness. Examples of its uses include' support for interaction 
via bi-directional chat-like facilities as well as support for uni-directional notifications, for 
example push-based information from services such as WWW and email, and notifica
tions of the activities of others through rooms bookings, version control changes, and so 
on. These uses have had a significant impact on the way people interact with information 
sources and on social cohesion within the organisation. The attraction of Elvin lies in its 
conceptual simplicity, absence of built-in policy, expressive power and multilingual range 
of simple APIs. Its uptake is largely a result of the Tickertape Elvin client, which provides 
a simple, compelling interface usable in numerous different situations. We contend that 
even though it does not try to be a collaboration-friendly notification service, Elvin is 
paradoxically very useful for collaborative awareness and interaction support 

Introduction 

Events, such as people arriving or leaving, phones ringing, sighs of frustration, 
the grind of the coffee machine, the hum of the printer, provide us with the per-



432 

ceptual resources we need to maintain awareness of our environment and of the 
possibilities we have for interaction with others. We use relevant events to coor
dinate our work or play: arranging our activities to take account of the exigencies 
of the moment and work toward our goals, while at the same time filtering out 
irrelevant events. Frequently this contingent arrangement takes place with little or 
no conscious effort (Heath and Luff (1992) and Robertson (1997) give more de
tailed discussions of these phenomena). 

In the virtual world, events that would keep us informed of what's going on 
'around us' and of who we could interact with become imperceptible. We don't 
know a file has changed, a colleague has arrived at work or a new directory has 
been created, and so on, unless we explicitly think (or know) to check. Thus the 
low-effort mechanisms through which we coordinate our activities in the real 
world are unavailable to us. That is, there are no inherent mechanisms in the vir
tual realm by which these actions or events can be made available as a perceptual 
resource (Robertson 1997) for awareness.; . 

With the growing appreciation for the importance of awareness in promoting a 
sense of shared place and shared work, there has been an increasing emphasis in 
the CSCW community on how to provide effective computer-based support for 
awareness in distributed environments. This has typically taken the form of event-
based notification services (Ramduny et al. 1998). However, most tend to be de
signed to support synchronous collaborative applications, either as an application-
specific service (Fuchs et al. 1995) of as a generic service to a single class of ap
plications, for example (Hall et al. 1996; Patterson et al. 1996). 

Rather than simply trying to build targeted collaborative environments, our fo
cus is on how we might go about making the workaday world (Moran and Ander
son 1990) more 'inherently' collaborative. When much of that workaday world 
happens within a distributed virtual and physical environment, as it does in our 
organisation, the DSTC1, the question becomes one of how can we instrument 
and augment everyday working tools to give events a virtual presence and to sup
port social interaction. ' 

This paper concerns the design, uses and possibilities for presence and aware
ness support of a notification service called Elvin (Segall and Arnold 1997). Elvin 
is a generic service middleware designed for distributed systems. Rather than de
signing it to be domain-specific; Elvin's designers attempted to design a general-
purpose notification service. 

After its construction, it began to be spontaneously used for new purposes by 
different research and prototyping groups within our organisation, including our 
own Orbit project (Mansfield et al. 1997). the technical attraction of Elvin lies in 
its conceptual simplicity, its absence of built-in policy, its expressive power and 
its multilingual range of simple APIs making it usable by both users and pro-

Distnbuted Systems Technology Centre 



433 

grammers of many different biases and skill levels. Its uptake is largely a result of 
the Tickertape Elvin client, which provided a simple, compelling interface usable 
in numerous different situations. 

We contend that even though it does not try to be collaboration friendly, Elvin 
(and other pure notification services (Ramduny et al. 1998) like it) is paradoxi
cally very useful for collaborative awareness and interaction support. We will 
show that this is because it allows us to augment the workaday world to provide 
the perceptual resources for awareness. Its design makes it easy to produce in
formation about events in the virtual (and even, in some cases, the physical) and 
to select relevant information. 

The discussion is structured as follows. First, we outline the design of Elvin, its 
features and conceptual model. Secondly, we summarise related work. Thirdly, 
we describe some user and programmer experiences with Elvin gathered by inter
view from around our organisation. Fourthly, we discuss how the design of Elvin 
facilitates those experiences and we argue why we think that pure notification 
services are particularly effective for CSCW. Finally, we discuss future work. 

The Elvin Event Notification Service 

The function of a notification service is to act as a distributor for notifications 
which we define as descriptions of events. We define an event as any significant 
change in the state of an observed object. Producers detect events (and are re
sponsible for determining that the status change is significant), and send descrip
tions to the notification service for dissemination to interested consumers, as 
shown in Figure 1. 

Elvin is a 'pure' notification service (Ramduny et al. 1998): producers send 
notifications to the service, which in turn sends them to consumers. The notifica
tions describe events using a set of named attributes of simple data types and con
sumers subscribe to a events using a boolean subscription expression. When a 

Figure 1. Elvin Architecture Overview. 



434 

Subscription Table 

Figure 2. Subscription examples for an environmental monitoring system. 

notification is received at the service from a producer, it is compared to the con
sumers' registered subscription expressions and forwarded to those whose expres
sions it satisfies. An example of this is given in Figure 2. 

This content-based selection of notifications is often sacrificed by other notifi
cation services in favour of less flexible mechanisms because it is difficult to im
plement efficiently. A common alternative uses named 'channels' or 'topics' that 
must be specified by both the producer and consumers. A key benefit of content-
based notification is the absence of this 'coupling' between producers and con
sumers, promoting system evolution and integration. 

Once producers are freed of the responsibility to direct notifications, the de
termination of the significance of a state change becomes less important: they can 
promiscuously notify any potentially interesting information, and rely on the noti
fication service to discard notifications of no (current) interest to consumers. 

While large volumes of unused notifications may be useful from a user's per
spective, they consume network bandwidth. To overcome this problem, Elvin in
cludes a quenching mechanism which allows producers to discard unneeded noti
fications without sending them to the server (see'Segall and Arnold 1997 for more 
detailed discussion). 

In order to support organisation-wide notification, the implementation of the 
notification service must cater for many client applications. A single Elvin server 
can effectively service thousands of clients (producers or consumers) and evaluate 
tens of thousands of notifications per second on moderate hardware platforms. 
Further, additional servers can be configured in a federation, sharing the load of 
notification delivery, providing wide-area scalability (allowing Elvin to work 
across multiple LANs) and ensuring fault-tolerance in the face of individual 
server failures. 

Like other pure notification services, Elviri does not store the notifications it 
sends - it provides no persistence for notifications. • 

The Elvin server is implemented in C for Unix platforms, and client-side li
braries are available for C, TCL, Smalltalk, Python, Lisp and Java. The basic El
vin services are implemented via several simple library calls that support session 
setup and termination, producer notification, consumer subscription and callback 
registration, polling (where required) and quenching. 



435 

Producer and consumer commands make the service accessible from a com
mand line shell and from shell scripts. Non-programming users can use graphical 
tools like Tickertape (see below) to produce and consume certain kinds of notifi
cations. 

Related Work 

Numerous workplace studies (for example, Heath and Luff 1992) have identified 
awareness as being crucial for the dynamic coordination of ongoing work. The 
approaches to computer-based support for awareness are many and varied. Dour-
ish and Bellotti (1992), for example, identify three mechanisms: explicit informa
tional awareness mechanisms (such as those provided by version control system 
annotation); role-restrictive mechanisms (such as those used in some group edit
ing systems and later in many workflow systems); and shared feedback mecha
nisms (where information about actions or events is collected and presented as 
background information in a shared workspace). More recent research has, as ob
served by Sandor et al (1997) evidenced an overwhelming concern with such 
event-based shared feedback approaches to awareness, which are more flexible 
than role-restrictive approaches. 

Sandor et al provide a critique of event-based approaches which only permit 
subscription based on event types, arguing that the need to define event types a 
priori make such systems inflexible. By using content-based subscription, Elvin 
avoids this problem. 

Previous work on notification services for awareness within the CSCW com
munity has tended to focus on the support of synchronous collaborative work. 
The term is used to refer to a variety of systems with very different behaviors and 
which may provide notifications directly to users or only to applications or both. 

Ramduny et al (1998) introduce a taxonomy for characterizing notification 
services based on their communication behavior and the level at which they oper
ate (system or user). The authors distinguish between services primarily on how 
they enable a client that effects a change in some piece of data (the active client) 
to communicate information about that change (the notification) to a client that 
wants to know (the passive client). They also discuss the possibilities of differ
ences in pace and volume between system level services and corresponding user 
level services. 

In the terms offered by Ramduny et al, Elvin is a pure notification service (ac
tive client tells notification service, notification service tells passive client) which 
remains completely separate from the observed data. Elvin primarily serves the 
system level, offering support for, applications to exchange notifications but little 
explicit support for user notification and volume or impedance matching. 

Perhaps the best known CSCW notification service is Lotus PlaceHolder, 
which is based on Notification Service Transfer Protocol or NSTP (Patterson et 



436 

al. 1996). Rather than providing a pure notification service, the designers of 
NSTP opted to focus on facilities for synchronous collaborative applications. 
They therefore conflate a notification service with a centralized data store for 
shared data. The work primarily focuses on providing a protocol (based loosely 
on HTTP) for interoperation between notification services. PlaceHolder is a sam
ple implementation of such a service. The notification service includes a number 
of design notions such as, Things (roughly, application objects) in Places (gener
alization of application session), with Facades (which moderate access to Things). 
The service is also envisioned as providing some system and some user level 
services ("place browsing" allows users to move between Places). 

The design of NSTP means that PlaceHolder will primarily be useful for the 
construction of bespoke synchronous collaborative applications. The explicit 
centralization of shared data makes it difficult to integrate PlaceHolder with ex
isting applications. The complexity of the required implementation also makes it 
difficult to produce competing servers for PlaceHolder to interoperate with. In 
contrast with Elvin, the service is also essentially channel-based and no conces
sions to scalability appear to have been made. 

Hall et al (1996) also focus on the design of a shared data communication 
service for synchronous groupware with CORONA. The designers of CORONA 
however, partition the system into ,a number of services and maintain the 'pub-
lish-subscnbe service' as a pure notification service using a channel-based ap
proach. Optimized for wide-area use, the publish-subscribe service multicasts 
published notifications to distributor nodes which in turn multicast to other dis
tributors which then send on to local subscribers. This enhances scalability by 
"minimizing system-wide awareness and change". This use of multicasting is not 
available to systems such as Elvin which do not rely on channel-based subscrip
tion. 

Lovstrand (1991) describes the Khronika system, which for several years was 
in use at Rank Xerox EuroPARC (Now Xerox Research Centre Europe, Cam
bridge). Khronika was fundamentally an event database that stored user-level 
events (meetings, brown-bag lunches, etc). Users could discover events by 
browsing the database or by assigning, 'event daemons' to issue notifications 
when certain kinds of events triggered. The system is very relevant to our discus
sion because it had a constraint language allowing users to specify quite complex 
subscriptions to events in which they were interested. We can consider Khronika's 
constraint language analogous to Elvin's subscription language. 

Khronika is also interesting because it was primarily a user-level notification 
service not a system-level service. Despite its intended domain, its design was 
quite similar to Elvin. ' 



437 

Using Elvin for the Workaday World 

As indicated above, Elvin quickly began to' be iised by a number of different re
search and prototyping groups within our organisation. A key trigger in facilitat
ing this usage was an application called Tickertape (Fitzpatrick et al. 1998; Par-
sowith et al. 1998) (to be discussed below) that developers initially created to give 
a visual display of event traffic. Tickertape enabled people to quickly understand 
what Elvin was, how it worked, and how it could be used for their own purposes. 

The usage examples that we discuss here were thought of and/or developed by 
a wide variety of people most of whom were not directly involved in the Elvin 
project, most of whom were technical developers and some users. Some of the 
systems, applications or tools take advantage of the Tickertape interface. Others 
use Elvin directly, plugging it into some other piece of software. Some are pri
marily to support 'individual' tasks. Others are to support collaborative aspects of 
work. Some started out to support an individual and were soon found to be useful 
as a way of providing others with the information they needed to better coordinate 
their work. The authors are also active users or developers of Elvin and/or its 
many associated tools. 

In the following section, we briefly discuss the methodology for this study. We 
then separate the following discussion into bi-directional uses (where users them
selves can generate messages as notifications as well as receive notifications, 
supporting awareness through interaction) and uni-directional uses (where notifi
cations are generated from some external source; supporting awareness via infor
mation flow) (Parsowith et al. 1998). 

Methodology 

The following usage comments are an aggregate of a Tickertape usage study re
ported in (Parsowith et al. 1998) (relying on semi-structured interviews and some 
conversational analysis based on 20,000 element log-files) and a further survey 
and semi-structured interviews conducted at the time of writing. In our initial 
study, Tickertape had roughly 20 users, usage has risen slowly in the last year to 
roughly 40 users. 

The analysis of that data has been informal, without reference to a theoretical 
framework. 

Bi-Directional Uses of Elvin ' 

Three key tools give users access to Elvin for bi-directional use: Tickertape, 
Tickerchat and CoffeeBiff. 



438 

gUickeiTape 0 0 1 3 

J U b S d amold so rry monitor wrks ,-) b&d bill you plugged it in0 b&darnoldyep to the mac 

Figure 3 The Tickertape interface showing exemplary scrolling messages 

Tickertape 

Tickertape is a highly tailorable tool that uses Elvin. It is both a producer and a 
consumer of notifications. It displays notifications that the user subscribes to and 
it can be used to construct chat-style messages that are sent as notifications. 

The Tickertape interface, as shown' in Figure 3, consists of a single resizable, 
rectangular window, showing small, colour-coded messages that scroll from right 
to left. Each message corresponds to an Elvin notification of a specific format that 
has been received by the Tickertape application. For example, the left-most mes
sage in the figure is from user 'arnold', has been sent to the group 'b&d', and has 
the text 'so my monitor works'. The Tickertape is designed to take up minimal 
space - the active area is a single line, and borders, etc can be removed to make 
the Tickertape 'fade into the background'. Most users position their Ticker-
tape(s)2 on the edges of their screens, where they provide a simple kind of periph
eral access to the information that scrolls by. 

Tickertape users subscribe to messages at two levels: they indicate the 'groups' 
they are interested in, where group is an attribute contained in the content of all 
messages to which Tickertape can subscribe, and they indicate some filters over 
the contents of messages which have the appropriate group attribute values. A 
simple set of dialog and menu list boxes is used to allow non-programmers to per
form this customisation. If events have a MIME attachment, associated graphics 
on the scrolling marquee indicate this, and the user can trigger the attachment 
with a mouse click. , • ' 

Individual notifications have a lifetime over which their appearance fades from 
colour to grey, thus providing an indication of how timely the information is. The 
lifetime is user-defined for each group. Users can also choose to delete or save a 
scrolling message by clicking on the message itself. Tickertape therefore provides 
users with a mechanism for controlling the transience of information. 

Tickertape provides no persistent storage of notifications, once a message 
fades away - it is lost. , 

One of the most popular uses for Tickertape is as a lightweight channel-based 
semi-synchronous chat tool. Users can define new chat groups by agreement with 
their peers. Messages can be sent as Elvin notifications by clicking on the Tick
ertape and using the resulting pop-up dialogue shown in Figure 4. Messages are 

*• One of the authors of this paper runs three tickers at all times, each customised to different types of infor
mation and running at different speeds 



439 

received as text on the Tickertape (Figure 3 shows an example conversation). 
Examples of interactive groups are: the 'Chat' group for all the people in the 

organisation (used as a general discussion forum and for user-generated an
nouncements), the iunch' group (used by regular lunch-goers to organise lunch 
times and venues), the 'b&d' group (for Bill and David who are working closely 
together on a project) and the Elvin group (for the developers of Elvin). 

Such chat groups are used extensively within the organisation by both techni
cal and non-technical staff, especially as people are distributed across different 
offices on different floors and, for a time, in different buildings. Tickertape is also 
used by people working from home to interact with colleagues in the office. In 
fact, the authors of this paper used it to discuss the paper while one was located in 
another country. It supports work-related discussions - a recent newcomer used 
the Chat group to ask for help in setting up his new environment and finding out 
what services were available. It is also used for social chitchat, and for broadcast 
announcements, such as "paging Dr Tim" (acting as a silent public announcement 
or paging system). 

Interactions over these bi-directional groups tend to be spontaneous, short, in
formal, often irreverent, and 'bursty',.similar in nature to face-to-face conversa
tion. They incorporate the synchronicity and immediacy of the telephone with the 
asynchronous style of email and are especially suited for temporally relevant in
formation, such as "there are cakes in the kitchen". , . . 

Very quickly, Tickertape has become embedded into the normal, working envi
ronment of the organisation as yet another means for communication and interac
tion along with the telephone, email, face-to-face discussions, and, porthole video 
images. Each of these has particular uses for which they excel and Tickertape has 
found its niche amongst them. It is not uncommon to see a discussion over Tick
ertape that ends with a comment such as "uh oh, see email...".or "wait a minute 
... I'm coming down" when the content of the discussion becomes more detailed 
than can be usefully handled in short chat messages. 

TickeiTape Message 

File Options Help 

HHDR1 

pMessage;' Attachment! 

-Usemaine-

! !£!_ 

••Group-

s&g 

Timeout -

10 minutes 

rMessageText-

[sara, what time is your meeting with margaret am I supposed to be there? 

OK Cancel Clear 

Figure 4 Sending a chat message via the Tickertape Dialog 



440 

Figure 5 A Tickerchat discussion. One person was at home, the others are 
in the office. 

Tickerchat 

For various reasons, three separate programmers developed a chat-tool-style inter
face to Tickertape. All of these Tickerchat implementations provide the same ba
sic interface, shown in Figure 5: a large window in which previous messages are 
shown, a line at the bottom in which one may enter new messages, and some way 
of selecting the group to which one's messages should be directed. Messages 
shown in Tickerchat do not fade, they simply scroll up the transcript window. Us
ers can choose to clear the buffer or save the buffer when they no longer want to 
see the message stream. • 

The Tickerchat tool extends the transience of the information in Tickertape 
making it more convenient for discussion as opposed to notification. This persis
tent quality allows users greater discretion about when they attend to discussions 
because they know they won't miss anything through time-out. One developer 
was motivated to build a Tickerchat by his frustration at regularly finding, upon 
returning to his desk after an absence, a raging debate on the Tickertape in which 
the original issues had long since faded out. 

Many users now choose to run both a Tickertape and a Tickerchat, using the 
Tickerchat when they enter a discussion land reserving the tape for observation of 
the flow of information. 

Churchill and Bly (1999) study the use of a MUD for informal communication 
and coordination in a laboratory quite similar to our own. While Tickertape and 
Tickerchat provide affordances similar to those of the MUD, with similar positive 
experiences to those reported by Churchill and Bly. We have avoided some of the 
pitfalls that they describe, notably the problems with participating in multiple on
going chats simultaneously, and the disconnection between the MUD and the 
user's real-world tools. Our tools avoid problems with multiple channels by sim
ply providing access to multiple channels of conversation on different ticker 



441 

channels. By designing Tickertape' in particular as a peripheral application that 
typically sits on the top or bottom edge of the screen, we obviate the need to al
ways switch context between the chat topljand other tools. 

CoffeeBiff 

A different example of a bi-directional use of Elvin is 
CoffeeBiff. When people go to the kitchen for a coffee break, 
they can click on the CoffeeBiff icon to indicate their 
intention to colleagues, as shown in Figure 6. If a person 
knows when her friends from other parts of the building are 
taking a break it can help her to coordinate her break times, or 
to identify when a colleague will be in the kitchen and 
possibly free for a casual chat. A background application 
subscribes to CoffeeBiff notifications and sends a second-
level notification to the Tickertape "Coffee" group when more 
than five people are drinking coffee, indicating that some kind 
of party is clearly in progress. 

B0OI 

Figure 6. 
CoffeeBiff 
icon with 
number and 
scrolling 
names. 

Uni-Directional Uses of Elvin 

Another significant use of Tickertape has been for uni-directional events where 
pre-existing external event streams are instrumented to produce Tickertape notifi
cations. This supports awareness through notification, providing, content-based 
information filtering. Event streams in regular use include: postings to Usenet 
news groups, commercial news sources on the World Wide Web (WWW), per
sonal email, and other sources such as a schedule system. Various developers 
around the organisation have written programs to translate an event source into an 
Elvin notification. 

Content Filtering 

Users can subscribe to these event sources by content. This means, for example, 
that a user can essentially say "show me all the postings to comp.groupware that 
mention 'shared drawing tool'" or "show me all the ABC headline news postings 
except for sport". Whenever a corresponding posting is detected, a Tickertape 
message will display the subject header with the text of the new article attached in 
a MIME attachment. The attached article can be viewed with a mouse click. 

Users have also used the content-based subscription feature to implement a 
form of social filtering of information. For example, several people have sub
scriptions of which mean "if this person from our organisation posts to the (news
group), tell me about it". This is making use of what they know about others' 
shared interests and areas of expertise - it is highly likely that if that person is 
contributing to a thread, then it will be of interest to them as well. 



442 

Users who take advantage of Usenet, WWW and email filtering in this way 
uniformly report that the way in which they interact with external information 
sources has been radically altered. Many users stated in interviews that the only 
time they go to a Usenet newsgroup now is when a Tickertape notification indi
cates there might be a thread of interest to them. Others never go to the source but 
read postings via Tickertape only. 

i i 

Email Notification . , 

There are now several ways for users to be alerted via Tickertape that they have 
received e-mail. Users can add a script to their mail processing (. fo rward) file 
which is run whenever they receive an email. This script generates a notification 
with appropriate summary information (sender, subject, and MIME information 
to access the message), and sends it to a private Tickertape group. More sophisti
cated versions of the script can be used in conjunction with automated mail fil
tering and sorting programs such as PROCMAIL. A user can access the email mes
sage directly by using the MIME attachment to open the appropriate folder and 
message. By enriching the messages generated by the mail script so that it con
tains more of, or all of, the mail message users can then use the content filtering 
capabilities of the subscription language to filter the mail-related notifications 
they see on the Tickertape. • 

Many users report that email is now far less of a distraction since they can see 
immediately who an email is from, arid what its subject is, and thus make a quick 
judgment about whether it is important enough to stop what they are doing to go 
read it. 

Advance Schedule Warning 

We have already noted that Tickertape is particularly useful for presenting tempo
rally relevant information of transient importance. This feature has been exploited 
in the instrumentation of the DSTC Rooms Booking calendar. At ten minutes 
prior to the booked time, a Tickertape notification is generated stating the time, 
room, and meeting description. Most obviously, this serves as a useful reminder 
to people. More importantly though, it serves as a general mechanism for making 
activities within the organisation more visible, and giving people a way of 'keep
ing an eye' on activities that they might'nbt otherwise have known about. 

Making Actions Visible , . , 

There are many examples of users writing code to generate events that reflect 
their activities in the virtual computing environment. One user, for example, has 
written scripts to generate a notification whenever he logs into or out of his work
station. In this way, others know when he has arrived at or leaves from work. 

There are also 'file-watcher' and 'web-watcher' event generators that monitor 
changes to the network file stores and local web pages respectively and send out 



443 

notifications via the relevant Tickertape groups. These serve as; an important in
formation source for people who rely,on system files, maintain sections of the 
company Web, etc. 

Analogous information is available via notifications generated from CVS. CVS 
is a revision control package used extensively within the DSTC to manage source 
code. Typically, a programmer will have a copy of the source tree of a project 
'checked out'. She keeps the copy synchronised with the copies of other pro
grammers by occasionally updating her copy in order to incorporate their changes 
and commit her own changes. As part of the 'commit' process, the user is 
prompted to log a comment as to what has changed and why., These comments 
play an important role in the coordination and articulation of software develop
ment by teams because others can go to the log file and read about what changes 
have happened (see Grinter 1997). 

To enhance out-of-band communication among developers, and facilitate early 
identification of conflicts, we have extended CVS to generate a Tickertape notifi
cation that includes the commit comments whenever a commit is performed. In 
addition to providing warnings about various kinds of commit problems, such as a 
race condition, this informs the other programmers who subscribe to the 'CVS' 
group of what changes other users are making. In effect this makes visible.the 
previously invisible activities of the user's colleagues. This allows the group of 
developers to contingently rearrange their work, negotiate to resolve problems, 
offer warnings and suggestions, and so on, all in a more timely manner than pre
viously possible. 

Other Elvin Applications 

Other applications have been developed using Elvin as the underlying event noti
fication structure. We will mention two here: 

ORBIT: Although we described Elvin as generic notifications service rather 
than a service for a bespoke collaborative system, it can still be used in collabora
tion-specific environments as we have done with Orbit (Mansfield et al. 1997). 

Orbit is a collaborative desktop environment that has a client-server architec
ture. When a client initiates interaction with the server, it uses a remote procedure 
call (RPC) mechanism (CORBA) to send a request to, and receive the reply, from 
the server. If the server initiates communication, it is because the server's state has 
changed and clients might need to be notified. In this case, it sends a notification 
of the state change via Elvin. This offloads the responsibility from the server to 
Elvin for keeping track of which client is interested in what information. 

Tickertape has also been extended so that bi-directional groups can be created 
that correspond to a group zone, thus providing Orbit users with a low-bandwidth 
communications tool that is specific to their work context. By adding additional 
information to the notifications that the Orbit server sends to its clients, we were 



444 

able to display these notifications in Tickertape as well. For example, when the 
membership of a group zone changes, the same notification that is sent to update 
the state of the client can also be displayed on the Tickertapes of the members of 
that zone to tell them of the new (or lost) member. 

Network Management: An Internet service provider runs status on each of its 
servers which then forward information via Elvin to diagnostic correlation en
gines. When problems with the status of a server are identified (or diagnostic 
messages fail to arrive), events are sent via an Elvin-to-pager gateway to the 
pagers worn by the sysadmins on duty. 

Summary 

In this section, we have shown a variety of ways in which Elvin has been used 
within the organisation. The chat-based tools and Coffee Biff tool that use Elvin 
for both production and consumption of events (we called this 'bi-directional') 
have been significant additions to existing communication resources for support
ing interactions, both for work and fun, in a distributed workplace. Not only have 
information and expertise been shared, but social cohesion and relationships have 
also been strengthened. . I 

The uni-directional uses where Elvin, mostly via Tickertape, has been used to 
push information to users from externally produced event streams has radically 
changed the ways in which people go about accessing and using many of these 
external sources (such as email, WWW, Usenet news etc). Other uni-directional 
uses, for example, where CVS or the Room Booking systems have been instru
mented, have facilitated opportunities for far greater awareness of activities and 
events both within the virtual realm and the social/organisational realm than has 
otherwise been possible This is because Elvin and Tickertape give a way to make 
the information available or 'present' as a perceptual resource for awareness. 

Why Does Elvin Work? 

Many of the cases given above are not intentionally CSCW-related, and this is 
precisely what makes them interesting to us. They are all examples of ever more 
powerful facilities being evolved .through the incremental instrumentation or 
augmentation of workaday tools. > 

Moreover, the user community were.prepared to put in this development effort 
because they believed,, and indeed found, that the facilities would be useful for 
their for their everyday work (thus avoiding Grudin's (1994) work-benefit dispar
ity problem). Perhaps one of the most surprising facts about the uptake of Elvin-
based services around DSTC (and beyond) is that there has hardly been any effort 
to promote the use of the system; its uptake has been entirely spontaneous, as our 
users came to recognise and take advantages of the benefits. 



445 

The essence of Elvin's success is that it fulfilled a key need: providing a way 
to gather and redistribute collaboration-focussed information produced during the 
everyday work of our users. Another key element of its success was that it did not 
detract from or inhibit the use of existing tool sets, yet provided the ability to 
flexibly, spontaneously and incrementally construct a suitable workaday envi
ronment that afforded substantially improved awareness and interaction. 

Gutwin and Greenberg (1996) define a taxonomy of information that users 
need to be aware of in a synchronous collaborative application. When the target 
domain is the larger context of all of the user's computer-based work, gathering 
this information is even more challenging. We cannot provide,a collaboration 
toolkit and request that programmers use it, since they are not usually construct
ing applications which they would think of as collaborative. Indeed we cannot 
provide a collaboration environment and request that users use it, either; users are 
going to use the tools that they need to accomplish their work, and shy away from. 
tools that inhibit this accomplishment. 

Using Gutwin and Greenberg's taxonomy, Elvin has been used,to inform about 
participant, location, activity level, actions, changes and objects. In so doing, El
vin helped to make perceptible a significant portion of the 'event-based' cues 
which we use as perceptual resources for awareness to shape our workaday lives, 
and which have been missing in virtual (ie., computer-based) activities. It also 
facilitated lightweight informal interactions in a distributed environment. 

Elvin Design Characteristics 

We believe there are four design characteristics of Elvin that have contributed to 
its widespread use, specifically: simplicity; genericity; performance; and infor
mality. These characteristics make the use of Elvin popular with authors of new 
software and straightforward to add to existing software. Tools constructed with 
Elvin also tend to exhibit these characteristics, which makes them popular with 
the broader user community. We will discuss these characteristics in turn. 

Simplicity 

The key design feature of Elvin is the simplicity of its API. Because the Elvin 
API is available for several programming languages, authors can usually use El
vin from their choice of development language. Because the API is simple (usu
ally involving in the order of five method or procedure calls) and at a high-level 
of abstraction, it is an appealing choice for busy developers. Developers often try 
to use Elvin for tasks outside of its design criteria (such as mimicking RPC be
haviour) for this reason alone. The designers often find themselves in the enviable 
position of explaining to hopeful Elvin users why they should not use it for their 
proposed task! 

The service is also accessible from the command-line making it feasible to use 



446 

the service without extensive programming. Technically-aware users can easily 
write shell scripts to issue or subscribe to notifications. The log in/log out notifi
cation mentioned previously is implemented using shell scripts, for example. For 
the even less technically aware,' GUI applications such as Tickertape provide an 
indirect way to use Elvin. 

A secondary and related reason is that Elvin programming is fun. The various 
Tickertape and Tickerchats, CVS, mail handlers, etc are all examples of develop
ers building simple applications for sheer enjoyment, and then propagating into 
the wider community. This sense of fun and adventure soon passed from the nar
rower developer community to the larger community, including computer-phobic 
staff members (among them authors of this paper). 

Genericity 

Ramduny et al (1998) characterise notification services like Elvin (in which an 
active client tells the service about a change in some data and then the service 
tells a passive client about the change) as a "pure" notification service. Elvin 
lacks any inbuilt policies about information distribution and it stores none of the 
information it transmits. Its only purpose is the notification of events. 

This means that Elvin can be used in. any application that requires distributed 
notification, not just synchronous collaborative applications. It also means that it 
is not typically onerous to add Elvin code to (or 'elvinize') existing applications. 
Its lack of policy means that it is more likely to 'fit' into the target application. 

The process of elvinizing an application is simply that of adding notifications 
wherever significant status changes occur in the application. Status change notifi
cations allow any interested parties elsewhere in the network stay informed about 
the state of the application. This can be used to provide feedthrough (in Ram-
duny's terms) to other users or to share status with other applications or both. 

Because Elvin is generic, programmers often add notification code to an appli
cation for reasons other than providing awareness. Some applications, for exam
ple Orbit, use Elvin as a means of implementing change notifications for a dis
tributed Model-View-Controller architecture. Those notifications can still be used 
to gather awareness information even though that was not the programmer's in
tent. ' ' 

Performance ' • , 
\ > 

The design of Elvin emphasizes efficient performance. The quench feature is de
signed specifically to minimizesunnecessary network traffic. The consequence of 
quench (particularly when quenching is performed automatically by the producer 
API) is that developers can add notifications wherever status changes occur with
out regard to who might receive them now or in the future. 

Quenching suggests potential applications such as using Elvin to generate de
bugging trace from immature applications. Rather than requiring the author to ex-



447 

plicitly place conditional statements around trace generating code, they could 
simply use Elvin notification code which would produce no trace unless some 
consumer (a transcript window perhaps) subscribed to it. ; 

Quenching allows an application author to know that unnecessary notifications 
will not be sent. Combining quenching with other design characteristics such as 
genericity and simplicity means that it costs little more to include notifications of 
significant status changes. This low cost encourages programmers to include such 
notifications just in case the notifications become useful later. 

Informality 

Elvin notifications are not explicitly typed. Every notification is simply a tuple of 
attribute-value pairs. Elvin does not require that any semantics (other than base 
type) be formally associated with any of these attributes or the tuple as a whole. 
Consumers subscribe to notifications based on content and typically select only 
what information they need from any notification they receive. This means that 
application authors can add more information to the tuple as the application 
evolves. 

For example, the notification format for Tickertape initially.included only at
tributes for the group, user, message text and timeout. Later, attributes were added 
to the notifications to-encode MIME attachments. These additions-had no effect 
on older Tickertape clients, which simply ignored the new attributes. As new re
quirements were determined additional attributes were unproblematically in
cluded. ' ' ' 

As this example illustrates, this property of informality makes piecemeal 
growth and evolution of a large-scale event infrastructure feasible. All potential 
consumers will subscribe to the notification in the same way: using the Elvin sub
scription language. No a priori typing system - of message contents or structure -
needs to be imposed on the set of notifications an application can send. The in
formality also means that awareness clients can gather awareness information 
based on any information in any notifications, not just based on what types of 
events the original authors thought might be interesting or useful. In this way 
awareness clients based on Elvin avoid problems associated with having to pre-
specify all message types (Sandor et al. 1997). 

The Tickertape GUI 

Without the Tickertape interface, however, it is doubtful whether these design 
features alone would have made Elvin so popular among the user community. A 
significant effort in making any notification service more accessible for user-level 
awareness is the effort involved in building an appropriate GUI. With Tickertape, 
that effort has already been expended. 

Despite some obvious shortcomings of Tickertape both as an application and 



448 

an interface, its main feature is that it exists. This makes Elvin accessible, under
standable and usable by > the broader user community. Once the user invests the 
initial effort to install and configure Tickertape, the subsequent barrier to usage 
for a whole variety of purposes (possible because of its tailorability) is very low. 

It also promotes less than optimal strategies. For example, in our translation of 
commercial WWW news pages into Tickertape notifications, in many cases more 
specialised interfaces would probably be more suitable. In the room booking noti
fications example, it would be useful to have an interface that would allow one to 
cancel a booking. Our online notifications from the weather station could proba
bly be better represented graphically than in a scrolling text line. On the other 
hand because of the difficulty of producing special-purpose graphical interfaces, 
it is unlikely that any of these, interfaces would ever have been built. Because 
Tickertape was there, it was easy to add additional information sources and the 
interface via Tickertape was good enough, so the solutions worked well enough. 

Summary , ,' ' 

Elvin provides a simple way for.application authors to provide information about 
significant status changes to other parties in the network. The potential ubiquity 
of the information and its lack of explicit semantics mean that gathering informa
tion about user presence, location.-activity level, actions, the changes they are 
making and the objects they are acting on is feasible even from applications that 
are not designed for collaboration: This point is extremely important. 

Conclusions & Future Work 

The thesis of this paper has been that a generic notification service can be used to 
both enable users to maintain awareness of the activities or status of others and 
support interaction between users. It does this by providing users with a stream of 
information about events in the virtual arid physical world and providing powerful 
tools for selecting relevant information. We have illustrated how a number of dif
ferent event sources (for example, Web news, CVS, email delivery, information 
stores) can be instrumented to produce meaningful events, and how clients can be 
used to feed this information to users in a relatively unobtrusive fashion. Gluing 
this all together through content-based message subscription provides a high de
gree of flexibility, since new consumers or producers can be added independently 
of one another. Potentially any state-based information source or event stream 
could be instrumented in this fashion, and many different kinds of clients could 
consume these events. The limiting factor, as always, is whether the effort one 
must expend to get the notifications generated in the first place is worth the re
sulting benefits. 

In our case we focused on information that was clearly but there' and reduced 


