
Customizable Collaborative Editor 
Relying on treeOPT Algorithm 
Claudia-Lavinia Ignat and Moira C. Norrie 
ETH Zurich, Switzerland  
ignat@inf.ethz.ch, norrie@inf.ethz.ch 

Abstract. Research in collaborative editing tends to have been undertaken in isolation 
rather than as part of a general information or application infrastructure. Our goal is to 
develop a universal information platform that can support collaboration in a range of 
application domains. Since not all user groups have the same conventions and not all 
tasks have the same requirements, this implies that it should be possible to customize the 
collaborative editor at the level of both communities and individual tasks. One of the keys 
to customization is to use a structured rather than linear representation of documents that 
can be applied to both textual and graphical editors. In this paper, we propose the 
treeOPT (tree OPerational Transformation) algorithm that, relying on a tree 
representation of documents, applies the operational transformation mechanism 
recursively over the different document levels. Applications using this algorithm achieve 
better efficiency, the possibility of working at different granularity levels and improvements 
in the semantic consistency. 

Introduction 

Within the CSCW field, collaborative editing systems have been developed to 
support a group of people editing a document collaboratively over a computer 
network. These systems can be used in a wide range of advanced computing 
application areas, including collaborative writing, collaborative CAD (Computer 
Aided Design) and CASE (Computer Aided Software Engineering). The major 
benefits of collaborative editing include reduced task completion time and 
distributed collaboration.  On the other hand, the challenges that it raises are 

315

schmidt
ECSCW'03



many, ranging from the technical challenges of maintaining consistency coupled 
with good performance to the social challenges of supporting group activities and 
conventions across many different communities.  

Within the existing collaborative-editors’ community, research tends to have 
been undertaken in isolation rather than as part of a general information or 
application infrastructure.  Also, most of the research tends to be theoretical with 
limited implementation and studies of use in practice. Where applications have 
been considered, i.e. collaborative editing for a particular task such as writing 
scientific articles or music, the solutions often assume particular characteristics of 
both the users and the documents that they are editing. We consider that it is 
important to take into account all aspects of collaborative editing together, 
inclusive of theoretical foundations, technical aspects of implementation and 
issues of user interaction. Further, it is important to integrate it within a general 
information and application infrastructure so that it can support collaboration for a 
range of communities and activities within these communities. Since not all user 
groups have the same conventions and not all tasks have the same requirements, 
this implies that it should be possible to customize the collaborative editor at the 
level of both communities and individual tasks. 

Most existing collaborative editors deal either with textual or graphical editing, 
using quite different document representations. In the case of textual editors, a 
linear representation is usually used. Our goal is to develop general textual and 
graphical collaborative editors that have a more structured representation that 
enables us to deal with consistency maintenance efficiently in both forms of 
editing, while offering the flexibility of customization of collaborative access.  

In this paper, we propose the treeOPT (tree OPerational Transformation) 
algorithm that relies on a tree representation of the document. Our algorithm relies 
on the same principles for consistency maintenance as the GOT (Sun et al., 1998), 
and GOTO (Sun and Ellis, 1998) algorithms, but applies the same basic 
mechanisms recursively over the tree. Applications using this algorithm achieve 
better efficiency, the possibility of working at different granularity levels and 
improvements in the semantic consistency relative to other existing operational 
transformation algorithms.  

We begin in the next section by motivating our choice of the operational 
transformation approach and giving a short overview of the consistency model on 
which our algorithm is based. We then present our algorithm in the following 
section, highlighting its advantages over other existing algorithms which rely on a 
linear structure representation. Next, we present some problems encountered 
when integrating the algorithm into the collaborative editor and the solutions we 
have adopted. Features of the customizable collaborative editor are presented in a 
separate section and this is followed by a section dedicated to a discussion of 
related work. Concluding remarks and the main directions of our future work are 
presented in the last section. 

316



Principles of consistency underlying the algorithm 

Real-time operation is an important aspect to be considered in the design of 
collaborative editing systems as users should be able to see the effects of their 
own actions immediately and those of other users as soon as possible. To ensure 
high responsiveness, a replicated architecture where users work on copies of the 
shared document and instructions are exchanged by message passing is necessary. 
High concurrency is also an essential requirement of real-time collaborative 
editing systems, i.e. any number of users should be able to concurrently edit any 
part of the shared document. 

Approaches such as turn-taking protocols, locking or serialization-based 
protocols fail to meet at least one of these requirements. Turn-taking protocols 
(Greenberg, 1991) allow only one active participant at a time, the one who “has 
the floor”; this approach is equivalent to document locking and lacks concurrency. 
Locking (Greenberg and Marwood, 1994) guarantees that users access objects in 
the shared workspace one at a time. Concurrent editing is allowed only if users are 
locking and editing different objects. Non-optimistic locking introduces delays for 
acquiring the lock. Optimistic locking avoids the delays, but it is not clear what to 
do when locks are denied and the object optimistically manipulated by the user 
must be restored to its original state. In the case of serialization-based protocols, 
operations are executed in the same total order at all sites. Non-optimistic 
serialization delays the execution of an operation until all totally preceding 
operations have been executed (Lamport, 1977). Optimistic serialization executes 
the operations upon their arrival, but uses undo/redo techniques to repair the out-
of-order execution effect (Karsenty and Beaudouin-Lafon, 1993). 

The operational transformation approach has been identified as an appropriate 
approach for maintaining consistency of the copies of the shared document in 
real-time collaborative editing systems. It allows local operations to be executed 
immediately after their generation and remote operations need to be transformed 
against the other operations. The transformations are performed in such a manner 
that the intentions of the users are preserved and, at the end, the copies of the 
documents converge. Various operational transformation algorithms have been 
proposed: dOPT (Ellis and Gibbs, 1989), adOPTed (Ressel et al., 1996), GOT 
(Sun et al., 1998), GOTO (Sun and Ellis, 1998), SOCT2 (Suleiman et al., 1997; 
Suleiman et al., 1998), SOCT3 and SOCT4 (Vidot et al., 2000). Although these 
algorithms are generic operational transformation algorithms, they can be applied 
only for applications that use a linear representation of the document. The real-
time collaborative text editors relying on these algorithms represent the document 
as a sequence of characters. 

We therefore base our work on the operational transformation approach. 
Specifically, our algorithm follows the same principles for consistency 

317



maintenance as presented in Sun et al. (1998). In the remainder of this section, we 
give a brief overview of the consistency model underlying our algorithm. 

We start by defining the notions of causal ordering relations and dependent and 
independent operations. 

Causal ordering relation "→": Given two operations Oa and Ob generated at 
sites i and j respectively then Oa is causally ordered before Ob, denoted Oa→Ob 
iff: (1) i=j and the generation of Oa happened before the generation of Ob; or (2) 
i≠j and the execution of Oa at site j happened before the generation of Ob; or (3) 
there exists an operation Ox such that Oa→Ox and Ox→Ob. 

Dependent and independent operations: Given any two operations Oa and Ob, 
(1) Ob is dependent on Oa iff Oa→Ob; (2) Oa and Ob are said to be independent or 
concurrent iff neither Oa→Ob, nor Ob→Oa. This is denoted OaOb. 

The consistency model satisfies the following consistency properties: 
• The convergence property requires that all copies of the same document are 

identical after executing the same collection of operations. 
• The causality preservation property requires that, for any pair of operations 

Oa and Ob, if Oa→Ob, then Oa is executed before Ob at all sites. 
• The intention preservation property requires that, for any operation O, the 

effects of executing O at all sites are the same as the intention of O and the 
effect of executing O does not change the effects of independent operations. 

To satisfy the above consistency properties different algorithms follow 
different approaches. 

To achieve causality preservation, most operational transformation algorithms 
(dOPT, adOPTed, GOT(O), SOCT2) use a timestamping scheme based on a data 
structure called a State Vector (Ellis and Gibbs, 1989). With the aid of this vector, 
the conditions for execution of an operation at a certain site (causally-ready 
operation) are defined. 

To achieve intention preservation, a causally ready operation has to be 
transformed before its execution in order to cope with the modifications 
performed by other executed operations. In the GOT algorithm two types of 
transformations are defined: inclusion transformations and exclusion 
transformations. An inclusion transformation of an operation Oa against an 
independent operation Ob, denoted IT(Oa,Ob), transforms Oa such that the impact 
of Ob is included in Oa. An exclusion transformation of an operation Oa against a 
causally-preceding operation Ob, denoted ET(Oa,Ob), transforms Oa such that the 
impact of Ob is excluded from Oa. Additionally, in the GOTO algorithm, a 
transpose function is defined to change the execution order of two operations 
while respecting the user intentions. The dOPT algorithm uses dOPT 
transformation, the equivalent of inclusion transformation. To achieve intention 
preservation, the adOPTed algorithm uses an N-dimensional interaction model 
graph and the L-transformation based on the same principle as inclusion 
transformation. SOCT2 and SOCT3 algorithms use forward transposition (the 

318



equivalent of inclusion transformation) and backward transposition with the same 
underlying ideas as the transpose operation. 

To achieve convergence most of the algorithms (adOPTed, GOTO, SOCT2) 
require that two conditions C1 and C2 be satisfied by the transformation 
functions. Condition C1 guarantees that the operation resulting from the 
transformation operation of two concurrent operations will not depend on the 
order in which they are serialized. Condition C2 aims at making the 
transformation of an operation with a sequence of operations independent of the 
order of the operations in the sequence. The dOPT algorithm uses only C1, but it 
fails to ensure the convergence of copies in all cases. GOT  imposes neither of 
these conditions, but requires a total ordering relation “⇒” between operations 
and an undo/do/redo scheme. SOCT3 and SOCT4 require only C1 and replace C2 
by a continuous global order of execution of operations. 

The treeOPT algorithm 

Most real-time collaborative editors relying on existing operational transformation 
algorithms for consistency maintenance use a linear representation for the 
document, such as a sequence of characters in case of text documents. This way of 
representing documents has several crucial disadvantages, which we present 
below. 

All existing operational transformation algorithms keep a single history of 
operations already executed in order to compute the proper execution form of new 
operations. When a new remote operation is received, the whole history needs to 
be scanned and transformations need to be performed, even though different users 
might work on completely different sections of the document and do not interfere 
with each other. Keeping the history of all operations in a single buffer decreases 
the efficiency. The existing algorithms for integrating a new causally ready 
operation into the history have a complexity of order n2, where n is the size of the 
examined history buffer (for example GOT, SOCT2, SOCT3). Exceptionally, the 
dOPT algorithm has a complexity of order n, but convergence of copies is not 
always achieved. Consequently, a long history results in a higher complexity. This 
complexity negatively affects the response time, i.e. the time necessary for the 
operations of one user to be propagated to the other users, which is a factor of 
critical importance in real-time editing systems.  

Dourish (1996) classifies conflicts as either syntactic or semantic. Syntactic 
conflicts occur at the system infrastructure level, while semantic conflicts are 
inconsistencies from the perspective of the application domain. Therefore, in the 
case of a multi-user text editor, consistency from the users’ perspective is often 
not the same as consistency from the system’s. Although the existing algorithms 
solve the syntactic inconsistency problems, they do not enforce semantic 
consistency. Let us consider that a shared document contains the text: “The child 

319



go alone to school.”. Assume that a user adds the letters “e” and “s” at the end of 
the word “go” intending to obtain: “The child goes alone to school.”.  At the same 
time, another user, deletes “go” and inserts “went” aiming to obtain: “The child 
went alone to school.”. Unfortunately, there is no automatic way to execute these 
conflicting operations and obtain a semantically consistent result. The best that 
the algorithms such as GOT(O) can obtain is the following: “The child wentes 
alone to school.”. The same kind of inconsistencies happen if operations insert or 
delete not letters as previously described, but whole words. Consider again the 
previous example. First user, would then delete the word “go” and insert the word 
“goes” in order to obtain: “The child goes alone to school.”. Suppose now that, 
simultaneously, the second user inserts the word “can”, changing the text into: 
“The child can go alone to school.”. Unfortunately, after each user receives the 
operations performed by the other one, the result is: “The child can goes alone to 
school.”. As we can see, even though all operations were operations involving 
whole words, semantic consistency could not be enforced. The conclusion we can 
draw is that working at any level of granularity can result in semantic 
inconsistencies, but working at a higher level usually translates into a more 
semantically consistent final result. However, semantic consistency remains an 
open issue that should also be tackled by operational transformation algorithms. 

We propose a new algorithm overcoming the disadvantages presented above.  
The algorithm relies on operational transformation and on modelling the 
document using a hierarchical rather than linear structure. We present the 
algorithm applied to a text document, but it can be easily adapted for any other 
document that uses a hierarchical structure. In the case of text documents, we 
model the document as consisting of paragraphs, each paragraph consisting of 
sentences, each sentence consisting of words and each word consisting of letters. 
Therefore, the tree structure has the following levels of granularity together with 
their assigned numeric values: document (0), paragraph (1), sentence (2), word (3) 
and character (4), corresponding to the common syntactic elements used in natural 
language.  

We are now in a position to formally present our algorithm and we begin by 
defining the basic notions of node and composite operation. 
 
Definition Node 

A node N is a structure of the form N=<level, children, length, history, 
content>, where  

- level is a granularity level, level∈{0,1,2,3,4}, corresponding to the element 
type represented by node (i.e. document, paragraph, sentence, word or character)  

- children is an ordered list of nodes {child1,...,childn}, 
  level(childi)=level+1, for all i∈{1,...,n} 
- length is the length of the node, 
       

320



 
      
        length=  

 
- history is an ordered list of already executed operations on children nodes 
- content is the content of the node, defined only for leaf nodes 

 
  content= 

 
Note that operations are equivalent to those defined by the model used in the 

GOT(O) algorithm. 
 

Definition Composite Operation  
A composite operation is a structure of the form 
cOp=<level, type, position, content, stateVector, initiator>, where: 
- level is a granularity level, level∈{1,2,3,4} 
- type is the type of the operation, type∈{Insertion, Deletion} 
- position is a vector of positions 
  position[i]= position for the ith granularity level,  i∈{1,...,level} 
- content is a node representing the content of the operation 
- stateVector is the state vector of the generating site 
- initiator is the initiator site identifier 
The level of a composite operation can be equal to 1, 2, 3 or 4, but not 0 

(deleting the whole document or inserting a whole new document are not 
permitted). The vector position specifies the positions for the levels corresponding 
to a coarser or equal granularity than that of the operation. For example, if we 
have an insertion operation of word level (3), we have to specify the paragraph 
and the sentence in which the word is located, as well as the position of the word 
within the sentence. The content of a composite insertion operation specifies the 
node to be inserted in the position given by the position vector. The attributes 
stateVector and initiator have the same meaning as in the case of the operations 
used by the GOT(O) algorithm. 

For the sake of simplicity, in future examples, we will denote operations by 
specifying only their type, level, position and the text conversion of content, 
ignoring the other attributes. For example, InsertWord(3,1,2,“ECSCW”) denotes a 
composite operation of type Insertion, having the level word, in paragraph 3, 
sentence 1, at word position 2 inside the sentence, and having as content a node of 
type word which stands for the text “ECSCW”. 

In what follows we will give an intuitive explanation of the algorithm, and 
afterwards describe it formally. 

Each site stores locally a copy of the hierarchical structure of the shared 
document. The root node of the tree will be the document node, having as 





=
<

      4  if          ,

4 if            ,undefined

levelaCharacter

level








∑
=

=

      otherwise  ,
1

)(

4 if                              ,1

n

i
i

childlength

level

321



 

children paragraph nodes. Each paragraph node, in its turn, will have as children 
sentence nodes, and so on. The leaf nodes will be character nodes. For a leaf node, 
the content of the node is explicitly specified in the content field. For nodes 
situated higher in the hierarchy, the content field will remain unspecified, but the 
actual content of each node will be the concatenation of the contents of its 
children. Each node (excluding leaf nodes) will keep a history of insertion or 
deletion operations associated with its children nodes. An example showing the 
structure of a document is illustrated in Figure 1: the document contains three 
paragraphs; paragraph 3 contains two sentences; sentence 1 of paragraph 3 
contains three words; 2nd word of sentence 1 in paragraph 3 is “ECSCW”. 

 

 

 

 

 

 

Figure 1. Example of structure of a document 

The algorithm follows the same principles as those of the GOT(O) algorithm. 
Each site can generate composite operations, representing insertions or deletions 
of subtrees in the document tree. Note that each node of a subtree to be inserted 
has an empty history buffer. The site generating a composite operation executes it 
immediately. The operation is also recorded in the history buffer associated to the 
parent node of the inserted or deleted subtree. Finally, the new operation is 
broadcast to all other sites, being timestamped using a state vector. Upon 
receiving a remote operation, the receiving site will test it for causal readiness. If 
the composite operation is not causally ready it will be queued, otherwise it will 
be transformed and then executed. Transforming the operation is somewhat more 
difficult (but also much more efficient) than in the case of the GOT(O) algorithm. 
We will illustrate the way transformations are performed using an example. 

Consider a site receiving the following remote composite operation: 
InsertWord(3,1,2,“ECSCW”). It is an operation intending to insert the word 
“ECSCW” in paragraph 3, sentence 1, as the 2nd word. The newly received 
operation must be transformed against the previous operations, as described 
below. 

First of all, we consider the paragraph number specified by the composite 
operation, which in this case is equal to 3. We do not know for sure that paragraph 

 

… …

… … 

…

   

Pa 1 Pa 2 

Se 3.1 Se 3.2 

W 3.1.1 W 3.1.2 W 3.1.3 

Document History 

Pa 3 History 

Se 3.1 History 

C 3.1.2.3 
“S” 

C 3.1.2.4 
“C” 

C 3.1.2.5 
“W” 

W 3.1.2 History 
 

C 3.1.2.1 
“E” 

Document 

Pa 3 

C 3.1.2.2 
“C” 

322



number 3 of this site's local copy of the document is the same paragraph as that 
referred to by the original operation. Suppose a concurrent operation inserts a 
whole new paragraph before paragraph 3. Then, in this case, we should insert the 
word “ECSCW” not in paragraph 3, but in paragraph 4. Therefore, we must first 
transform the new operation against previous operations involving whole 
paragraphs, which are kept in the document history buffer. Note that this could be 
done using any existing operational transformation algorithm working on linear 
structures such as the GOT(O) algorithm. After performing these transformations, 
we obtain the position of the paragraph in which the operation has to be 
performed, paragraph number 4 in our example. Consequently, the new composite 
operation will become InsertWord(4,1,2,“ECSCW”). Here it is important to note 
that previous concurrent operations of finer granularity are not taken into account 
by these transformations, because the document history buffer contains only 
operations at the paragraph level. Indeed, we are not interested in whether another 
user has just modified another paragraph, because this fact does not affect the 
number of the paragraph where the word “ECSCW” has to be inserted.  

The next step obtains the correct number of the sentence where the word has to 
be inserted. Therefore, the new operation is transformed against the operations 
belonging to Pa4 history. Pa4 history only contains insertions and deletions of 
sentences that are children of paragraph 4. We again apply an existing operational 
transformation algorithm, and obtain the correct sentence position (for example 
sentence 2), transforming the operation into InsertWord(4,2,2,“ECSCW”). The 
algorithm continues by obtaining the correct word position in the same manner.  

Finally, the operation can be executed and recorded in the history. Because it is 
an operation of word level, it must be recorded in the history associated with the 
parent sentence. 

As we can see, the algorithm achieves consistency by repeatedly applying an 
existing concurrency control algorithm on small portions of the entire history of 
operations, which, rather than being kept in a single linear structure, is distributed 
throughout the tree.  

We now present the general form of the treeOPT algorithm. 
 
Algorithm  treeOPT(cOp, rootNode, noLevels){ 

Given a new causally ready composite operation, cOp, the root node of the 
hierarchical representation of the local copy of the document, rootNode, and the 
number of levels in the hierarchical structure of the document, noLevels, the 
execution form of cOp is returned. 

currentNode = rootNode; 
for (l = 1; l <= noLevels; l++) 
 onew = Composite2Simple(cOp, l); 
 eonew = Transform(onew, history(currentNode)); 
 position(cOp)[l] = position(eonew); 

323



 if (level(cOp) = l)  
   return cOp; 
 currentNode = childi(currentNode), where i=position(eonew); 
} 
 
In the case of the text editor noLevels=4 and rootNode=document. 
As we have seen in the previous examples, determining the execution form of a 

composite operation requires finding the elements of the position vector 
corresponding to a coarser or equal granularity level than that of the composite 
operation. For each level of granularity l (starting with paragraph level and ending 
with the level of the composite operation), an existing operational transformation 
algorithm is applied to find the execution form of the corresponding regular 
operation. Traditional algorithms do not perform transformations on composite 
operations, but rather on regular ones. Therefore, we had to define the function 
Composite2Simple, that takes as arguments a composite operation, together with 
the granularity level at which we are currently transforming the operation, and 
returns the corresponding regular operation. The operational transformation 
algorithm is applied on the history of the currentNode whose granularity level is l-
1 (recall that, for example, to find the corresponding paragraph position, 
transformations need to be performed against the operations kept in the document 
history). The lth element in the position vector will be equal to the position of the 
execution form of the regular operation. If the current granularity level l is equal 
to the level of the composite operation, the algorithm returns the execution form 
of the composite operation. Otherwise, the processing continues with the next 
finer granularity level, with currentNode being updated accordingly. 

By Transform(op, history) we denote any existing concurrency control 
algorithm, that, taking as parameters a causally-ready regular operation op and a 
history buffer history, returns the execution form of op. The implementation of 
the Transform method depends on the chosen consistency maintenance algorithm 
working on a linear structure of the document. We tested the operation of our 
algorithm when combined with the GOT algorithm and adapted to the 
undo/do/redo scheme of this algorithm. A detailed implementation of the 
treeOPT-GOT algorithm as well as of the Composite2Simple function can be 
found in (Ignat and Norrie, 2002).  Combining our algorithm with dOPT can be 
easily performed. The transform function should be replaced with the part of 
dOPT algorithm for executing a causally ready operation (Ellis and Gibbs, 1989). 
When combined with SOCT2, the algorithm has to be adapted to the mechanism 
of integrating an operation into the history by performing forward and backward 
transpositions (Suleiman et al., 1998).   

The treeOPT algorithm is a general algorithm in that it can be applied to any 
document having a hierarchical structure. A trivial application would be the case 
of a book modelled as being composed of chapters, with each chapter consisting 

324



of sections, each section of paragraphs, each paragraph of sentences and so on. 
Another application is the case of XML documents. If we consider an XML 
document as being composed of elements without attributes, the algorithm is 
straightforward. In the case of elements with attributes, the treeOPT algorithm is 
still applicable, but an underlying algorithm for a linear structure dealing, not only 
with concurrent operations of insert and delete, but also with operations for 
modifying attributes needs to be implemented. 

An important advantage of the algorithm is related to its improved efficiency. 
In our representation of the document, the history of operations is not kept in a 
single buffer, but rather distributed throughout the whole tree, and, when a new 
operation is transformed, only the history distributed on a single path of the tree 
will be spanned. This will turn out to be a very important increase in speed, 
especially given the fact that the complexity of the concurrency control algorithms 
for a linear structure is usually of O((spanned_history)2). Moreover, when 
working on medium or large documents, operations will be localized in the areas 
currently modified by each individual user and these may often be non-
overlapping. In these cases, almost no transformations are needed, and therefore 
the response times and notification times are very good (recall the fact that in the 
case of algorithms working on linear structures, every operation interferes with 
any other, independently of the distance between the positions specified in the 
operations). 

Another important advantage is the possibility of performing, not only 
operations on characters, but also on other semantic units – words, sentences and 
paragraphs. The transformation functions used in the operational transformation 
mechanism are kept simple as in the case of character-wise transformations, not 
having the complexity of string-wise transformations. An insertion or a deletion 
of a whole paragraph can be done in a single operation. Therefore, the efficiency 
is further increased, because there are fewer operations to be transformed, and 
fewer to be transformed against. Moreover, the data is sent using larger chunks, 
thus the network communication is more efficient. Our approach also adds 
flexibility in using the editor, the users being able to select the level of granularity 
they prefer to work on.  

Last, but not least, our algorithm can help users in enforcing the semantic 
consistency of the documents, because working at a coarser granularity is allowed.  

Adapting the algorithm to the collaborative editor 

In this section we want to report on some problems we had when adapting the 
treeOPT-GOT algorithm for the text collaborative editor application and the 
solutions we have adopted to overcome these problems. 

Even though the algorithm works very well with insert and delete primitives at 
different levels of the hierarchy, in practice these two primitives are not sufficient 

325



to perform all possible operations. Actually this happens due to the introduction 
of the different hierarchic levels. Let us consider the following example. Suppose 
the second paragraph of a document consists of the following sentence: “Nobody 
influences her like her brother.” as shown in the Figure 2 (a). Suppose we want to 
split this sentence into two other sentences: “Nobody influences her. She likes her 
brother.” How can we perform this operation by using only insert and delete 
primitives? One alternative would be to first delete the words “like”, “her” and 
“brother”, from the first sentence, and then to insert the whole sentence: “like her 
brother.”. As a result of performing these operations, the new structure of 
Paragraph 2 will be the one illustrated in Figure 2(b). 

 
 

 

 

 

 

Figure 2. (a) Initial structure of the document;       (b)Structure of the Paragraph 2 after splitting the               
Sentence 2 

Unfortunately this approach does not work. Suppose that concurrently with the 
split operation of the sentence, another user, noticing the poor English, tries to 
insert the word “does” at the end of the sentence, in order to obtain “Nobody 
influences her like her brother does.” The operation sequence is illustrated in 
Figure 3(a). As we can see, by the time operation InsertWord(2, 1, 7,“does”)  is 
received at Site1,  the words “like”, “her” and “brother”  are already deleted 
from the paragraph 2, sentence 1, and these operations of word deletion are kept 
in the history of Sentence 2.1. Applying the algorithm, the operation 
InsertWord(2, 1, 7, “does”) will be transformed into InsertWord(2, 1, 4,”does”). 
The resulting structure of the paragraph, shown in Figure 3 (b), is not what the 
user at Site2 intended.  

 
 
 

 
 

Figure 3. (a) Operation sequence              (b) Erroneous result due to emulating split by using 
insertions and deletions 

Nobody influences her like her brother 

Sentence 2.1 

Document 

Paragraph 2 Paragraph 3 Paragraph 1 

      InsertSentence (2,2, 
         ”like her brother.”) 

Sentence 2.1 Sentence 2.2 

Paragraph 2 

influences her like her brother Nobody

Sentence 2.1 Sentence 2.2 

Paragraph 2 

Nobody influences her like her brother does 

InsertWord(2,1,7,“does”) DeleteWord(2,1,6) 

DeleteWord(2,1,5) 

 DeleteWord(2,1,4) 

Site1 Site2 

326



An unexpected result would be also obtained if the user at Site2 intends to 
change the word “brother” into “brothers”. The operation is performed on the 
Sentence 2.1, but the word “brother” has been already deleted from this sentence. 

As we can see, splitting a sentence (or a word, or a paragraph) is not as simple 
as it seems at first sight. Some other possible ways of simulating the split 
operation using only insertions and deletions exist, but none of them is feasible. 
The reason is that a structural element might appear different on two hosts at the 
same time, and the two structures converge only because the history of operations 
on that element is kept at both sites. When an element is split into two parts, its 
history must be also split. Using only elementary insert/delete operations cannot 
detect the case when the history needs to be split or not. The same problem is 
encountered in the case of joining two elements. For example, if we delete a 
sentence separator, the two adjacent sentences will be joined into a single one 
implying the joining of the histories of the two sentences. 

An alternative solution would be to introduce two other primitives: split and 
join, and to modify the algorithm by implementing operational transformation 
functions for these primitives as well. By means of an example, we show that this 
solution also does not work. Suppose that initially we have the sentence S1 = “He 
really enjoyed the movie.” in both the local copies of users at Site1 and Site2 and 
the operation sequence is shown in Figure 4. 

 
 
 

Figure 4. Counterexample for split and join primitives 

Operation Op1 initiated by the user at Site1 splits sentence S1 in two sentences 
S11 = “He really enjoyed.” and S12 = “the movie.”. Operation Op2 deletes only 
sentence S12. However, when operation Op2 arrives at Site 2, it cannot be directly 
executed, because it is independent of the operation Op3 (whatever Op3 is), and 
consequently must include the effect of Op3. But before accomplishing this, Op2 
has to have the same initial context as Op3. That is why we need an exclusion 
transformation of Op2 against Op1. If we exclude the effect of Op1, that splits S1 
into S11 and S12, deleting the sentence “the movie.” will have to be transformed 
into two different operations, which are not of the same granularity: 
DeleteWord(“the”), DeleteWord(“movie”). This is not an acceptable solution 
because the idea of the treeOPT algorithm is to transform operations against other 
operations of the same level of granularity, the result being also an operation of 
the same level of granularity. 

The most appropriate solution we have so far found, although somehow 
disappointing, is not to split or join elements in the tree structure. For example, 
given the text “god father” composed of two words, deleting the space between 

Site1 Site2 
Op1 

Op2 

Op3 

327



the two words, will still have as a result the two words, even though not separated 
by anything. The same approach can be adopted in the case of splits. If we insert a 
sentence separator, for instance a dot, or even a paragraph separator, for instance 
new line, inside a sentence, the text will be kept as a single sentence. Embracing 
this approach will however lead to degenerated elements. For example, the text 
“Life is beautiful. So are you.” might be a single large degenerated word, and the 
text “deep” can be stored in three degenerated sentences: “d”, “ee”, and “p”. 
Obviously, the hierarchical structure resulting in the case of degenerated elements 
is different from the one obtained by parsing the text and by delimiting the 
elements using their natural separators. 

Even with this drawback, the algorithm works well. We afford degenerated 
elements because, when issuing an operation, the positions of the elements of 
different granularity levels (paragraph, sentence and word) are computed by 
taking into account the length of the previous elements. Consequently, the fact 
that the elements are degenerated does not matter. The efficiency of the algorithm 
remains unaffected by the degenerated elements, because the structure of the 
document will remain hierarchical, and operations will be transformed locally, 
spanning only a small part of the whole history of operations. Unfortunately, 
semantic consistency will be more difficult to maintain. It is harder to combine 
the algorithm with locking on a specific level of granularity. For example, trying 
to lock a word might result in locking a whole paragraph which is stored into a 
degenerated word. However, the problem is not as severe as it seems, because the 
reparsing of the whole document will be performed every time a new user begins 
the editing of the same document, or when the document is reloaded. Reparsing 
restores the semantic consistency of elements, only non-degenerated elements 
being generated. Reparsing the document should be enforced as often as possible. 
But, parsing the document implies having the same copy of the document at all 
sites. This means that reparsing can be performed only in moments of quiescence. 
Either the system can detect the moments of quiescence and initiate reparsing on 
copies of the document at all sites, or quiescence could be enforced by the system 
from time to time.  

Analyzing the situation, the algorithm still keeps the anticipated efficiency 
boost, and also enhances the semantic consistency, even though not as well as 
expected. 

We believe that the other approaches that apply operational transformation 
mechanisms for maintaining consistency in the case of a tree structure (Davis and 
Sun, 2002; Molli et al., 2002b) are also faced with the same problem of splitting 
or joining elements. However, nothing related to this problem is mentioned in 
their publications. Let us consider the example of an XML document modeling 
information about articles. Part of  such a document is given below: 

 

 

328



<article> 

    … 

 <author> Grady Booch </author>  

     <author> Ivar Jacobson </author> 

</article> 

If a user realizes that only first author is the author of the article and the second 
author is one of the authors of another article, then the article element may need to 
be split as follows: 

<article> 

    … 

 <author> Grady Booch </author> 

</article> 

<article> 

    …  

     <author> Ivar Jacobson </author> 

</article> 

From the example presented above, we can see that the problem of splitting 
XML elements is a similar problem to that of splitting elements of different 
granularity levels in our approach.  

Customizable Collaborative Editor 

It is desirable to have a collaborative editor that is customizable for not only 
application domains, but also activities and upon user request.  

We have implemented a multi-document collaborative text editor relying on 
the treeOPT-GOT algorithm (Nedevschi, 2002). Users can join or leave the 
editing of any document or of the whole session whenever they want. Users can 
be made aware of the modifications done by other users, through the use of 
different colours and the application can provide a legend with the users editing 
the same document and the associated colours. Users are also informed by means 
of messages that appear on the lower part of the editor about the ongoing activity 
of the group, such as the joining of new users. Users can select the level of 
granularity they prefer to work on. Some users prefer to wait until writing a whole 
paragraph and, only then, to send an insert operation containing this paragraph. 
Others prefer to send operations character by character, in order to enable the 
other users to visualize the modifications as soon as possible. 

In what follows we present some other functionality that we want to offer to 
the editor.  

Optional locking as a complementary technique to operational transformation 
(Sun, 2002) can be used for maintaining the semantic consistency. Group undo 
(Sun, 2000) (global versus local, single step, chronological or selective) should be 
provided for error-recovery or alternative exploration. Members of a team might 

329



wish to work independently in parallel, "insulated" in their private workspaces for 
some period of time (Molli et al., 2002a; Dourish, 1995). For example, when 
writing an entire new paragraph, some users might prefer to make it visible only 
after completing the work, or, in the case of an architectural design, it seems 
natural that an architect does not want to publish very sketchy initial drafts of their 
plans.   

Social aspects such as audio communication or chat systems between users are 
also very important for avoiding or resolving conflict between users. Even though 
our system automatically resolves conflicting operations generated by different 
users, the conflicts can also be solved more easily by mutual agreements among 
users. A great feature of our application is that conflicts are always solved, but 
they should be avoided to begin with. Messages like “I’m now working on the 
Introduction section.” prevent other users from modifying the same part of the 
document. Even in the case of conflicts, after an automatic solution has been 
generated and perhaps produced something unexpected, the users involved in the 
conflict can communicate with each other, finding out the intentions of the others 
and agreeing on a solution. Different activities of users can be tracked (Chalmers, 
2002). For example, for avoiding conflicts, it might be useful to have information 
about the frequency of modifications on different parts of the document 
performed in the last period of time. The scroller can change the intensity of its 
colour according to the number of modifications performed on that part of the 
document. Also, for each user, a chronological list of operations performed can be 
kept. Although almost all of the aspects mentioned above were researched into in 
isolation, open questions exist and we feel it is important to integrate and study 
many of these in the context of a single system. 

Collaborative applications can offer a real improvement in the users’ working 
activities if the underlying architecture of the implementation platform is able to 
provide required functionality already integrated at a lower-level, so that 
applications do not have to deal with aspects such as metadata handling, 
persistence, distribution and multi-user support. We therefore plan to integrate the 
collaborative editors into the Universal Information Platform (UIP) (Rivera, 
2001), an object-oriented, multi-user, distributed, persistent information 
management system. For example, the collaborative editor application can easily 
be enhanced with access rights and roles associated to users and groups of users, 
as these features are already integrated into the core of the project. 

Related work 

Starting with the dOPT algorithm of Ellis and Gibbs (1989), various 
algorithms using operational transformation for maintaining consistency in 
collaborative systems have been proposed: adOPTed (Ressel, 1996), GOT(Sun et 
al., 1998), GOTO (Sun and Ellis, 1998), SOCT2 (Suleiman et al., 1997), SOCT3 

330



and SOCT4 (Vidot et al., 2000). As mentioned previously, all of these algorithms 
are based on a linear representation of the document whereas our algorithm uses a 
tree representation of the document and applies the same basic mechanisms as 
these algorithms recursively over the different document levels.  

Other recent research has also looked at tree representations of documents. The 
dARB (Ionescu and Marsic, 2000) algorithm also uses a tree model for document 
representation, however it is not able to automatically resolve all concurrent 
accesses to documents and, in some cases, must resort to asking the users to 
manually resolve inconsistencies. Their approach is similar to the dependency 
detection approach for concurrency control in multi-user systems where operation 
timestamps are used to detect conflicting operations and the conflict is then 
resolved through human intervention (Stefik et al., 1987).  The dARB algorithm 
may also use special arbitration procedures to automatically resolve 
inconsistencies; for example, using priorities to discard certain operations, thereby 
preserving the intentions of only one user. In our approach, we preserve the 
intentions of all users, even if, in some cases, the result is a strange combination 
of all intentions. However, the use of different colours provides awareness of 
concurrent changes made by other users and the main thing is that no changes are 
lost. Moreover, because operations (delete, insert) are defined only at the 
character level in this algorithm, i.e. sending only one character at a time, the 
number of communications through the network increases greatly. Further, there 
are cases when one site wins the arbitration and it needs to send, not only the state 
of the vertex itself, but maybe also the state of the parent or grandparent of the 
vertex. Sending whole paragraphs or even the whole document in the case that a 
winning site has performed a split of a sentence or a paragraph, respectively, is 
not a desirable option. In our approach, we tried to reduce the number of 
communications and transformations as much as possible, thereby reducing the 
notification time, which is a very important factor in groupware. For this purpose, 
our algorithm is not a character-wise algorithm, but an element-wise one, i.e. it 
performs insertions/deletions of different granularity levels (paragraphs, 
sentences, words and characters). Moreover, we do not need retransmissions of 
whole sentences, paragraphs or of the whole document in order to maintain the 
same tree structure of the document at all sites.   

Some very recent publications have used operational transformation applied to 
documents written in dialects of SGML (Standard General Markup Language) 
such as XML and HTML (Davis and Sun, 2002; Molli et al., 2002b) or to CRC 
cards (Molli et al., 2002b). These are particular cases where a tree model of the 
document is required. These works were performed in parallel to our 
implementation of the editor relying on the treeOPT algorithm. However, their 
motivation for developing the algorithms differs from ours. They wanted to adapt 
operational transformation to XML-like structured documents and this required 
the transformation functions (Sun et al., 1998;Vidot et al., 2000) to be extended to 

331



allow concurrent operations of insertion/deletion of elements and modification of 
the attributes of the elements in the XML structure. Our goal is to find a general 
and efficient algorithm for maintaining consistency applicable to all kinds of 
documents: raw, XML, graphical, etc. The hierarchical model seems a suitable 
model for a set of application domain documents. Therefore the treeOPT 
algorithm was designed and then implemented as the basis of a collaborative text 
editor where the hierarchical structure is not so obvious.  

The existing collaborative graphical editors are based on one of three basic 
approaches to consistency maintenance, namely, locking - e.g. Aspects (von Biel, 
1991), Ensemble (Newman-Wolfe et al., 1992), GroupDraw (Greenberg et al., 
1992), serialization - e.g. GroupDesign (Karsenty and Beaudouin-Lafon, 1993), 
LICRA (Kanwati, 1992) or multi-version techniques - e.g. Tivoli (Moran et al., 
1995), GRACE (Sun and Chen, 2002). The only work investigating a tree model 
for the graphical documents is (Ionescu and Marsic, 2000), but their approach, as 
previously mentioned, has the main disadvantage of not resolving inconsistencies 
automatically. 

Conclusions and future work 

In this paper, we have presented a consistency maintenance algorithm relying 
on a tree representation of documents. The hierarchical representation of a 
document is a generalisation of the linear representation and, in this way, our 
algorithm can be seen as extending the existing operational transformation 
algorithms. The algorithm applies the same basic mechanisms as existing 
operational transformation algorithms recursively over the different document 
levels and it can use any of the operational transformation algorithms relying on 
linear representation. When used by applications that rely on a hierarchical 
structure of the document, it achieves better efficiency, the possibility of working 
at different granularity levels and improvements in the semantic consistency.  We 
have presented the algorithm focusing on its functionality for text documents, but 
it can also be applied for any kind of document relying on a hierarchical 
representation. We highlighted some key features of the customizable editor 
relying on the treeOPT algorithm and also discussed our plans to integrate the 
editor into the universal information platform UIP which provides a complete and 
rich API that could be used for the development of collaborative space for general 
document management.  

In the future, we plan to investigate the possibility of introducing locking at 
different granularity levels (paragraph, sentence, word). We anticipate a set of 
challenges due to split and join operations as described in the paper and to the 
distributed locking conflict resolution protocol because of the peer-to-peer 
architecture of our application. Also, we want to develop a consistency 
maintenance algorithm for the case of a collaborative graphical editor relying on 

332



some of the main concepts that were used for the text editor, such as the tree 
representation of the document. We also plan to perform some benchmarking and 
to evaluate the performance of the treeOPT algorithm in comparison with other 
existing algorithms. 

References 

Chalmers, M. (2002): ‘Awareness, Representation and Interpretation’, in J. CSCW, vol. 11, 2002, 
pp. 389-409. 

Davis, A.H. and Sun, C. (2002): ‘Generalizing Operational Transformation to the Standard general 
Markup Language’, Proceedings of Conference on Computer Supported Cooperative Work, 
2002, pp. 58-67. 

Dourish, P. (1995): ‘The Parting of the Ways: Divergence, Data Management and Collaborative 
Work’, Proc. Fourth European Conference on Computer-Supported Cooperative Work 
ECSCW'95, Stockholm, Sweden, September 1995. 

Dourish, P. (1996): ‘Consistency Guarantees: Exploiting Application Semantics for Consistency 
Management in a Collaboration Toolkit’, Proc. ACM Conference on Computer-Supported 
Cooperative Work CSCW'96 , 1996, pp. 268-277.. 

Ellis, C.A., and Gibbs, S.J. (1989): ‘Concurrency control in groupware systems’, Proceedings of 
the ACM SIGMOD Conference on Management of Data, May 1989, pp. 399-407. 

Greenberg, S. (1991): ‘Personalizable groupware: Accomodating individual roles and group 
differences’, Proceedings of the European Conference on Computer Supported Cooperative 
Work, Amsterdam, September 1991, pp.17-32. 

Greenberg, S., Roseman, M., Webster, D. and Bohnet, R. (1992): ‘Issues and experiences 
designing and implementing two group drawing tools’, Proceedings of the 25th Annual 
Hawaii International Conference on the System Science, 1992, pp. 138-150. 

Greenberg, S. and Marwood, D. (1994): ‘Real time groupware as a distributed system: 
Concurrency control and its effect on the interface’, Proceedings of the ACM Conference on 
Computer Supported Cooperative Work, North Carolina, October 1994, pp. 207-218. 

Ignat, C.L. and Norrie, M.C. (2002): ‘Tree-based Model Algorithm for Maintaining Consistency in 
Real-Time Collaborative Editing Systems’, The Fourth International Workshop on 
Collaborative Editing Systems, CSCW 2002, New Orleans, USA, November 2002. 

Ionescu, M. and Marsic, I. (2000): ‘An Arbitration Scheme for Concurrency Control in Distributed 
Groupware’, The Second International Workshop on Collaborative Editing Systems, CSCW 
2000, December 2000. 

Kanwati, R. (1992) ‘LICRA: a replicated-data management algorithm for distributed synchronous 
groupware application’, in Parallel Computing 22, 1992, pp. 1733-1746. 

Karsenty, A., and Beaudouin-Lafon, M. (1993): ‘An algorithm for distributed groupware 
applications’, Proceedings of the 13th International Conference on Distributed Computing 
Systems, May 1993, pp.195-202. 

Lamport, L. (1977): ‘Time, clocks, and the ordering of events in a distributed system’, in 
Communication of the ACM, vol. 21, no. 7, July 1977, pp.558-565. 

Molli, P., Skaf-Molli, H. and Oster, G. (2002a): ‘Divergence Awareness for Virtual Team through 
the Web’, in Integrated Design and Process Technology, IDPT-2002, Pasadena, CA, USA. 
Society for Design and Process Science, June 2002. 

333



Molli, P., Skaf-Molli, H., Oster,G. and Jourdain, S. (2002b): SAMS: ‘Synchronous, asynchronous, 
multi-synchronous environments’, Proceedings of the Seventh International Conference on 
CSCW in Design, Rio de Janeiro, Brazil, September 2002. 

Moran, T., McCall, K., van Melle, B., Pedersen, E. and Halasz, F. (1995): ‘Some design principles 
for sharing in tivoli, a whiteboard meeting-support tool’, in Groupware for Real-Time 
Drawings: A designer's Guide, S. Greenberg, Ed. McGraw-Hill International(UK), 1995, pp. 
24-36. 

Nedevschi, S. (2002): ‘Concurrency control in real-time collaborative editing systems’, Diploma 
Thesis, ETH Zurich, 2002. 

Newman-Wolfe, R.E., Webb M., and Montes, M. (1992): ‘Implicit locking in the Ensemble 
concurrent object-oriented graphics editor’, Proc. of the ACM Conference on Computer 
Supported Cooperative Work (CSCW’92), New York, 1992, pp. 265-272. 

Ressel, M., Nitsche-Ruhland, D. and Gunzenbauser, R. (1996): ‘An integrating, transformation-
oriented approach to concurrency control and undo in group editors’, Proc. of ACM 
Conference on Computer Supported Cooperative Work, November 1996, pp. 288-297. 

Rivera, G. (2001): ‘From File Pathnames to File Objects: An approach to extending File System 
Functionality integrating Object-Oriented Database Concepts’, Doctoral Thesis No. 14377, 
ETH Zurich, September 2001. 

Suleiman, M., Cart, M. and Ferrié, J. (1997): ‘Serialization of Concurrent Operations in 
Distributed Collaborative Environment’, Proc. ACM Int. Conf. on Supporting Group Work 
(GROUP'97), Phoenix, November 1997, pp. 435-445. 

Suleiman M., Cart M. and Ferrié J. (1998): ‘Concurrent Operations in a Distributed and Mobile 
Collaborative Environment’, Proc.14th IEEE Int. Conf. on Data Engineering IEEE/ 
ICDE'98, Orlando, February 1998, pp. 36-45. 

Sun, C. (2000): ‘Undo any operation at any time in group editors’, Proceedings of ACM 
Conference on CSCW, Philadelphia, USA, December 2000, pp. 191-200.  

Sun, C. (2002): ‘Optional and Responsive Fine-grain Locking in Internet-based Collaborative 
Systems’, in IEEE Transactions on Parallel and Distributed Systems, vol. 13, no. 9, 
September 2002, pp.994-1008. 

Sun, C. and Chen, D. (2002): ‘Consistency Maintenance in Real-Time Collaborative Graphics 
Editing Systems’, in ACM Transactions on Computer-Human Interaction, vol.9, no.1, 
March 2002, pp. 1-41. 

Sun, C. and Ellis, C. (1998): ‘Operational Transformation in Real-Time Group Editors: Issues, 
Algorithms, and Achievements’, Proc. ACM Int. Conf. On Computer Supported Cooperative 
Work (CSCW’98), Seattle, November 1998, pp. 59-68. 

Sun, C., Jia, X., Zhang, Y., Yang, Y. and Chen, D. (1998): ‘Achieving Convergence, Causality-
preservation, and Intention-preservation in Real-time Cooperative Editing Systems’, in ACM. 
Trans. on Computer-Human Interaction, vol. 5, no. 1, March 1998, pp.63-108. 

Stefik, M., Foster, G., Bobrow, D.G., Kahn, K., Lanning, S. and Suchman, L. (1987): ‘Beyond the 
chalkboard: Computer support for collaboration and problem solving in meetings’, 
Communications of the ACM, vol. 30, no.1, January 1987, pp.32-47. 

Vidot, N., Cart, M., Ferrié, J., and Suleiman M. (2000): ‘Copies convergence in a distributed real-
time collaborative environment’, Proceedings of the ACM Conference on Computer 
Supported Cooperative Work, Philadelphia, USA, December 2000, pp.171-180. 

von Biel, V. (1991): ‘Groupware Grows Up’, in MacUser, June 1991, pp. 207-211. 

334


